精英家教网 > 高中数学 > 题目详情
已知函数.
(1)当时,求函数的极值点;
(2)记,若对任意,都有成立,求实数的取值范围.
解:(1),定义域                                 
,得 

的极小值点为:;无极大值点
(2)由题得,对任意,恒有
.则,其中  

                                      


时,恒有,所以,函数单调递增,,成立                                                          
时,令,则
时,,单调递减;      
时,,单调递增;    
为函数的最小值,又所以不成立
综上所述,.                                            
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数

(1)当时,若,试求

(2)若函数在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年海南省高考压轴卷文科数学试卷(解析版) 题型:解答题

(本小题满分10分)选修4-5:不等式选讲

已知函数

(1)当时,求函数的定义域;

(2)若关于的不等式的解集是,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二下学期期中文科数学试卷(解析版) 题型:解答题

(本小题12分)已知函数

(1)当时,判断的单调性;

(2)若在其定义域内为增函数,求正实数的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市宝山区高三上学期期末质量监测数学 题型:解答题

已知函数

    (1)当时,求满足的取值范围;

    (2)若的定义域为R,又是奇函数,求的解析式,判断其在R上的单调性并加以证明.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题

((本小题满分14分)

已知函数

(1)当时,如果函数仅有一个零点,求实数的取值范围;

(2)当时,试比较的大小;

(3)求证:).

 

查看答案和解析>>

同步练习册答案