分析 (1)设P(x0,y0),则S(-1,y0),由此利用向量的数量积能求出曲线C的方程.
(2)设Q(x1,y1),则${{y}_{1}}^{2}=4{x}_{1}$,从而y2=4x,p=2,焦点F(1,0),N(-1,0),由PQ过F,得${x}_{1}=\frac{1}{{x}_{0}}$,${y}_{1}=-\frac{4}{{y}_{0}}$,进而$\overrightarrow{SM}$=($\frac{({x}_{0}+1)^{2}}{2{x}_{0}},-\frac{{{y}_{0}}^{2}+4}{2{y}_{0}}$),$\overrightarrow{NQ}$=($\frac{{x}_{0}+1}{{x}_{0}},-\frac{4}{{y}_{0}}$),由此能证明向量$\overrightarrow{SM}$与$\overrightarrow{NQ}$共线.
解答 解:(1)设P(x0,y0),则S(-1,y0),
∴$\overrightarrow{OP}•\overrightarrow{ST}$=(x0,y0)•(4,-y0)=4${x}_{0}-{{y}_{0}}^{2}$=0,
∴${{y}_{0}}^{2}=4{x}_{0}$.
∴曲线C:y2=4x.
证明:(2)设Q(x1,y1),则${{y}_{1}}^{2}=4{x}_{1}$,
y2=4x,p=2,焦点F(1,0),N(-1,0),
∵PQ过F,∴x0x1=-$\frac{{p}^{2}}{4}$=1,
${y}_{0}{y}_{1}=-{p}^{2}=-4$,
∴${x}_{1}=\frac{1}{{x}_{0}}$,${y}_{1}=-\frac{4}{{y}_{0}}$,
∴${x}_{M}=\frac{{x}_{0}+{x}_{1}}{2}$=$\frac{{{x}_{0}}^{2}+1}{2{x}_{0}}$,
${y}_{m}=\frac{{{y}_{0}+{y}_{1}}^{\;}}{2}$=$\frac{{{y}_{0}}^{2}-4}{2{y}_{0}}$,
∴$\overrightarrow{SM}$=($\frac{{{x}_{0}}^{2}+1}{2{x}_{0}}+1,\frac{{{y}_{0}}^{2}-4}{2{y}_{0}}-{y}_{0}$)=($\frac{({x}_{0}+1)^{2}}{2{x}_{0}},-\frac{{{y}_{0}}^{2}+4}{2{y}_{0}}$),
$\overrightarrow{NQ}$=(x1+1,y1)=($\frac{{x}_{0}+1}{{x}_{0}},-\frac{4}{{y}_{0}}$),
假设$\overrightarrow{SM}$=$λ\overrightarrow{NQ}$成立,
∴$\left\{\begin{array}{l}{\frac{({x}_{0}+1)^{2}}{2{x}_{0}}=λ•\frac{{x}_{0}+1}{{x}_{0}}}\\{-\frac{{{y}_{0}}^{2}+4}{2{y}_{0}}=λ•\frac{-4}{{y}_{0}}}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=\frac{{x}_{0}+1}{2}}\\{λ=\frac{{{y}_{0}}^{2}+4}{8}=\frac{4{x}_{0}+4}{8}=\frac{{x}_{0}+1}{2}}\end{array}\right.$,
∴$\overrightarrow{SM}=\frac{{x}_{0}+1}{2}\overrightarrow{NQ}$,
∴向量$\overrightarrow{SM}$与$\overrightarrow{NQ}$共线.
点评 本题考查曲线方程的求法,考查向量共线的证明,考查抛物线、直线方程、向量的数量积等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 调查全省食品市场上某种食品的色素含量是否符合国家标准 | |
| B. | 调查某城市某天的空气质量 | |
| C. | 调查所在班级全体学生的身高 | |
| D. | 调查全省初中生每人每周的零花钱数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲是乙的充分条件但不是必要条件 | |
| B. | 甲是乙的必要条件但不是充分条件 | |
| C. | 甲是乙的充要条件 | |
| D. | 甲既不是乙的充分条件也不是乙的必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2a的小数部分 | B. | 1-2a的小数部分 | C. | 2-2a的小数部分 | D. | 以上都不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com