精英家教网 > 高中数学 > 题目详情
1.某一天上午的课程表要排入语文、数学、物理、体育共4节课,如果第一节不排体育,最后一节不排数学,那么共有14种排法.

分析 分两类,若第一节排数学,若第一节不排数学,根据分类计数原理即可得到答案.

解答 解:若第一节排数学,有A33=6种方法,
若第一节不排数学,第一节有2种排法,最后一节有2种排法,中间两节任意排,2×2×2=8种方法,
根据分类计数原理,共有6+8=14种,
故答案为:14.

点评 本题主要考查排列组合的计算问题,根据特殊元素的满足的条件,利用分类讨论是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[$\frac{a}{2}$,$\frac{b}{2}$],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是(  )
A.(0,$\frac{1}{4}$)B.(-∞,$\frac{1}{4}$)C.(0,$\frac{1}{4}$]D.(-∞,$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.$\sqrt{2+\frac{2}{3}},\sqrt{3+\frac{3}{8}},\sqrt{4+\frac{4}{15}},\sqrt{5+\frac{5}{24}},…$,由此猜想出第n(n∈N+)个数是$\sqrt{(n+1)+\frac{n+1}{{{{(n+1)}^2}-1}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}中,an=2n-1,(n≤4,n∈N),又an+4=an,则a2015=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设ξ~B(18,p),又E(ξ)=9,则p的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={x|y=lg(1-x)},集合N={y|y=ex,x∈R},则M∩N=(  )
A.{x|x<1}B.{x|0<x<1}C.{x|x>1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设直线l1:x-y+6=0和直线l2:2x-2y+3=0,则直线l1与直线l2的位置关系为:(  )
A.平行B.重合C.垂直D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow{m}$=(sinωx,-1),$\overrightarrow{n}$=(1,-$\sqrt{3}$cosωx)(其中x∈R,ω>0),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,且函数f(x)图象的某个最高点到其相邻的最低点之间的距离为5,
(1)求函数f(x)的单调递增区间;
(2)若f($\frac{3θ}{π}$)=$\frac{6}{5}$(其中θ∈(-$\frac{5π}{6}$,$\frac{π}{6}$),则求f($\frac{6θ}{π}$+1)的取值.

查看答案和解析>>

同步练习册答案