精英家教网 > 高中数学 > 题目详情

函数数学公式(x≥0)的反函数是


  1. A.
    y=(2-x)2(x≥2)
  2. B.
    y=(x-2)2(x≥0)
  3. C.
    y=(x-2)2
  4. D.
    y=(2-x)2(x≤2)
A
分析:由原函数的解析式解出自变量x的解析式,再把x 和y交换位置,注明反函数的定义域(即原函数的值域).
解答:∵(x≥0),
∴x=(y-2)2,y≥2,
故反函数为y=(2-x)2(x≥2).
故选A.
点评:本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,是函数y=(
1
2
)x
和y=3x2图象的一部分,其中x=x1,x2(-1<x1<0<x2)时,两函数值相等.
给出如下两个命题:
①当x<x1时,(
1
2
)x<3x2

②当x>x2时,(
1
2
)x<3x2

(1)举出一个反例,说明命题①是假命题;
(2)利用基本函数的单调性,说明命题②是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宝山区二模)已知f(x)=
10x+a10x+1
是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=数学公式是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是函数y=(
1
2
)x
和y=3x2图象的一部分,其中x=x1,x2(-1<x1<0<x2)时,两函数值相等.
给出如下两个命题:
①当x<x1时,(
1
2
)x<3x2

②当x>x2时,(
1
2
)x<3x2

(1)举出一个反例,说明命题①是假命题;
(2)利用基本函数的单调性,说明命题②是真命题.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2006-2007学年浙江省嘉兴市高一(上)期末数学试卷(A卷)(解析版) 题型:解答题

如图,是函数和y=3x2图象的一部分,其中x=x1,x2(-1<x1<0<x2)时,两函数值相等.
给出如下两个命题:
①当x<x1时,
②当x>x2时,
(1)举出一个反例,说明命题①是假命题;
(2)利用基本函数的单调性,说明命题②是真命题.

查看答案和解析>>

同步练习册答案