精英家教网 > 高中数学 > 题目详情
1.A={0,2,4,6,…},B={2m|m∈N},则A与B的关系是A=B.

分析 化简集合A,即可得出结论.

解答 解:B={2m|m∈N}={0,2,4,6,…},
∴A=B.
故答案为:A=B.

点评 本题考查集合的关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.计算:$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{49}81}{lo{g}_{25}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各式的值:
(1)log1515;
(2)log0.41;
(3)log981;
(4)log2.56.25;
(5)log7343;
(6)log3243.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=$\frac{x}{(x+1)(2x-m)}$为奇函数,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)是偶函数,当x>0时,f(x)=$\frac{2x+3}{x+1}$.
(1)当x<0时,求f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知loga(x1x2…x2006)=4,则logax12+logax22+…+logax20062的值是(  )
A.4B.8C.2D.loga4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知关天x的不等式(2x-2t)(ln$\frac{2x}{t+2}$)≥0对任意的x∈[1,+∞)恒成立,则实数t的取值集合是{t|-2<t≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A={x|x2-4x+3<0},B={x|$\frac{x-2}{x-4}<0$},C={x|2x2-9x+a<0},求满足(A∩B)UC=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=$\frac{1}{x}$($\frac{1}{2}$≤x≤2)的图象与函数y=logax(a>0,a≠1)的图象有一个交点,则a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{2}}{2}$,1)∪(1,4]D.(1,4]

查看答案和解析>>

同步练习册答案