精英家教网 > 高中数学 > 题目详情
4.已知两个等差数列{an}、{bn},它们的前n项和分别是Sn、Tn,若$\frac{S_n}{T_n}$=$\frac{2n+3}{3n-1}$,则$\frac{{{a_3}+{a_5}}}{{{b_3}+{b_5}}}$+$\frac{a_4}{{{b_2}+{b_6}}}$=$\frac{51}{40}$.

分析 利用等差中项即得$\frac{{a}_{4}}{{b}_{4}}$=$\frac{{S}_{7}}{{T}_{7}}$,进而计算即得结论.

解答 解:∵数列{an}、{bn}均为等差数列,
∴S7=$\frac{7({a}_{1}+{a}_{7})}{2}$=7a4,T7=$\frac{7({b}_{1}+{b}_{7})}{2}$=7b4
又∵$\frac{{{a_3}+{a_5}}}{{{b_3}+{b_5}}}$=$\frac{2{a}_{4}}{2{b}_{4}}$=$\frac{{a}_{4}}{{b}_{4}}$,$\frac{a_4}{{{b_2}+{b_6}}}$=$\frac{{a}_{4}}{2{b}_{4}}$=$\frac{1}{2}$•$\frac{{a}_{4}}{{b}_{4}}$,
∴$\frac{{{a_3}+{a_5}}}{{{b_3}+{b_5}}}$+$\frac{a_4}{{{b_2}+{b_6}}}$=$\frac{3}{2}$•$\frac{{a}_{4}}{{b}_{4}}$,
∵$\frac{S_n}{T_n}$=$\frac{2n+3}{3n-1}$,
∴$\frac{{a}_{4}}{{b}_{4}}$=$\frac{{S}_{7}}{{T}_{7}}$=$\frac{2×7+3}{3×7-1}$=$\frac{17}{20}$,
∴$\frac{{{a_3}+{a_5}}}{{{b_3}+{b_5}}}$+$\frac{a_4}{{{b_2}+{b_6}}}$=$\frac{3}{2}$•$\frac{{a}_{4}}{{b}_{4}}$=$\frac{3}{2}$•$\frac{17}{20}$=$\frac{51}{40}$,
故答案为:$\frac{51}{40}$.

点评 本题考查等差数列的简单性质,利用等差中项是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知a>0,b>0,a+$\frac{1}{a}$+$\frac{b}{2}$+$\frac{8}{b}$=6,若直线y=mx+ab与不等式组$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y≥0\\ x-2≤0\end{array}\right.$,表示的平面区域有公共点,则实数m的取值范围是(  )
A.$[{-6,-\frac{3}{2}}]$B.[-2,0]C.$[{-2,-\frac{3}{2}}]$D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC中,AB=2,$AC=\sqrt{2}BC$,则△ABC的面积的最大值为 (  )
A.2$\sqrt{2}$B.2$\sqrt{5}$C.2D.$\frac{2}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定积分${∫}_{0}^{2}$2xdx的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图圆C半径为1,A为圆C上的一个定点,B为圆C上的动点,若点A,B,C不共线,且$|\overrightarrow{AB}-t\overrightarrow{AC}|≥|\overrightarrow{BC}|$对任意t∈(0,+∞)恒成立,则$\overrightarrow{AB}•\overrightarrow{AC}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知命题p:x>k,命题q:$\frac{3}{x+1}$<1;如果p是q的充分不必要条件,则k的取值范围是k≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在如图所示的多面体ABCDE中,AB⊥平面ACD,AB∥DE,AD=DE=2CD=2,四边形ABED的面积为3,∠CAD=30°.
(1)求证:直线AC⊥平面CDE;
(2)若G为AD的中点,求三棱锥G-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列an=n2-3λn(n∈N*)为单调递增数列,则λ的取值范围是λ<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)在平面直角坐标系xOy中,以Ox轴为始边作一个钝角θ,它的终边交单位圆于P点.已知P点的纵坐标为$\frac{4}{5}$.求$\frac{{cos(π-θ)+sin({\frac{3π}{2}-θ})}}{tan(π+θ)+cos(2π-θ)}$的值.
(2)若对任意θ∈R,不等式cos2θ+2msinθ-2m-2<0恒成立,求实数m的范围.

查看答案和解析>>

同步练习册答案