精英家教网 > 高中数学 > 题目详情

【题目】已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A﹣BCD的外接球,BC=3,AB=2 ,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面圆面积的取值范围是

【答案】[2π,4π]
【解析】解:如图,设△BDC的中心为O1 , 球O的半径为R, 连接oO1D,OD,O1E,OE,
,AO1=
在Rt△OO1D中,R2=3+(3﹣R)2 , 解得R=2,
∵BD=3BE,∴DE=2
在△DEO1中,O1E=

过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,
此时截面圆的半径为 ,最小面积为2π.
当截面过球心时,截面面积最大,最大面积为4π.
所以答案是[2π,4π]

【考点精析】本题主要考查了球内接多面体的相关知识点,需要掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.

优秀

非优秀

总计

甲班

10

乙班

30

合计

105

已知在全部105人中随机抽取一人为优秀的概率为.

(1)请完成上面的列联表

(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到1011号的概率.

参考公式和数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a、b、c三个实数成等差数列,则直线bx+ay+c=0与抛物线 的相交弦中点的轨迹方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有7名数理化成绩优秀者,其中A1,A2,A3数学成绩优秀,B1,B2物理成绩优秀,C1,C2化学成绩优秀,从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛.

(1)求C1被选中的概率;

(2)求A1,B1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位员工人参加学雷锋志愿活动,按年龄分组:第,第,,,,得到的频率分布直方图如图所示.

1)下表是年龄的频率分布表,求正整数的值;

区间






人数






2)现在要从年龄较小的第组中用分层抽样的方法抽取人,年龄在第组抽取的员工的人数分别是多少?

3)在(2)的前提下,从这人中随机抽取人参加社区宣传交流活动,求至少有人年龄在第组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点C在以AB为直径的圆O上,PA垂直于圆O所在的平面,G为△AOC的重心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数y=f(x)在∈(m,+∞)上的单调性;

(2),则当x∈[m,m+1]时,函数y= f(x)的图象是否总在函数图象上方?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点A(1,﹣1),B(3,0),C(2,1),P为平面ABC上的一点, ,且 =0, =3.
(1)求
(2)求λ+μ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为)千元.设该容器的建造费用为千元.

1)写出关于的函数表达式,并求该函数的定义域;

2)求该容器的建造费用最小时的

查看答案和解析>>

同步练习册答案