【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=AD,点M在线段EF上。
(1)求证:BC⊥平面ACFE;
(2)若,求证:AM∥平面BDF.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)由已知梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,易求出AC⊥BC,结合已知中平面ACFE⊥平面ABCD,及平面与平面垂直的性质定理,即可得到BC⊥平面ACFE.
(2)设ACBD=N,则CN:NA=1:2,结合条件可得MF∥AN,且MF=AN,从而得到AM∥NF,由线面平行的判定定理可得结论.
(1)在梯形ABCD中,∵AB∥CD,
AD=CD=CB=a,∠ABC=60°
∴四边形ABCD是等腰梯形
且∠DCA=∠DAC=30°,∠DCB=120°
∴∠ACB=∠DCB-∠DCA=90°
∴AC⊥BC
又∵平面ACFE⊥平面ABCD,交线为AC,
∴BC⊥平面ACFE.
(2)在梯形ABCD中,设ACBD=N,连接FN,则CN:NA=1:2
又∵EM:MF=1:2,而EF=AC
∴MF∥AN,且MF=AN
∴四边形ANFM是平行四边形,
∴AM∥NF
又∵NF平面BDF,AM平面BDF
∴AM∥平面BDF.
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点在原点,对称轴是x轴,并且经过点,抛物线C的焦点为F,准线为l.
(1)求抛物线C的方程;
(2)过F且斜率为的直线h与抛物线C相交于两点A、B,过A、B分别作准线l的垂线,垂足分别为D、E,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,再随机抽取3人赠送礼品,试求抽取3人中恰有2人是“微信控”的概率.
参考公式:,其中.
参考数据:
0.050 | 0.040 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数是奇函数,其中为实数.
(1)求实数的值;
(2)用定义证明在上是减函数;
(3)若对于任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有如下三个命题:
甲:相交直线l、m都在平面内,并且都不在平面内;
乙:直线l、m中至少有一条与平面相交;
丙:平面与平面相交.
当甲成立时
A. 乙是丙的充分而不必要条件
B. 乙是丙的必要而不充分条件
C. 乙是丙的充分且必要条件
D. 乙既不是丙的充分条件又不是丙的必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:过点,其左右焦点分别为,,三角形的面积为.
Ⅰ求椭圆C的方程;
Ⅱ已知A,B是椭圆C上的两个动点且不与坐标原点O共线,若的角平分线总垂直于x轴,求证:直线AB与两坐标轴围成的三角形一定是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部销售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com