精英家教网 > 高中数学 > 题目详情
为互不重合的平面,为互不重合的直线,给出下列四个命题:]
①若
②若,则
③若  
④若   
其中所有正确命题的序号是(    )
A.①②B.①③C.③④D.①③④
B
①正确,②只有两条直线相交时结论才成立,③正确,④由可得,又所以,错误,因此正确的是①③,选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为2的菱形,且
为正三角形,的中点,为棱的中点
(1)求证:平面
(2)求二面角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为正方形,且平面分别是的中点.
(Ⅰ)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为矩形,底面,点在侧棱上,

(I)证明:是侧棱的中点;
(Ⅱ)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD—A1B1C1D1的底面边长和侧棱长都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,点O为底面对角线AC与BD的交点.
(Ⅰ)证明:A1O⊥平面ABCD;
(Ⅱ)求二面角D—A1A—C的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面
PAD⊥面ABCD(如图2)。
(1)证明:平面PAD⊥PCD;
(2)试在棱PB上确定一点M,使截面AMC,把几何体分成的两部分
(3)在M满足(Ⅱ)的情况下,判断直线AM是否平行面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 如图,在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2, ∠ACB=90°,D、E分别为AC、AA1的中点.点F为棱AB上的点.
(Ⅰ)当点F为AB的中点时.
(1)求证:EF⊥AC1
(2)求点B1到平面DEF的距离.
(Ⅱ)若二面角A-DF-E的大小为的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四个命题,其中正确的命题是         (   )
①若直线l //平面,则直线l的垂线必平行平面
②若直线l与平面相交,则有且只有一个平面,经过l与平面垂直;
③若一个三棱锥每两个相邻侧面所成的角都相等,则这个三棱锥是正三棱锥;
④若四棱柱的任意两条对角线都相交且互相平分,则这个四棱柱为平行六面体.
A.①B.②C.③D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,四棱锥G—ABCD中,ABCD是正方形,且边长为2a,面ABCD⊥面ABG,AG=BG。
(1)画出四棱锥G—ABCD的三视图;
 
(2)在四棱锥G—ABCD中,过点B作平面
AGC的垂线,若垂足H在CG上,
求证:面AGD⊥面BGC
(3)在(2)的条件下,求三棱锥D—ACG的体积
及其外接球的表面积。

查看答案和解析>>

同步练习册答案