精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax
(1)求f(x)的解析式;
(2)是否存在实数a,使得当x∈(0,1]时,f(x)有最大值1?
分析:(1)利用函数的奇偶性,求f(x)的解析式;
(2)求函数的导数,利用导数研究使得当x∈(0,1]时,f(x)有最大值1成立的条件,即可求解a.
解答:解:(1)若x∈(0,1],则-x∈[-1,0),
当x∈[-1,0)时,f(x)=x3-ax
∴f(-x)=-x3+ax,
∵f(x)是定义在[-1,0)∪(0,1]上的偶函数,
∴f(-x)=-x3+ax=f(x),
即f(x)=-x3+ax,x∈(0,1],
f(x)=
x3-ax,x∈[-1,0)
-x3+ax,x∈(0,1]
;    
(2)当x∈(0,1]时,f(x)=-x3+ax,
∴f'(x)=-3x2+a,
∵0<x2≤1,∴-3≤-3x2<0,
当a>3时,f(x)在(0,1]上递增,
∴f(x)的最大值为f(1)=a-1=1,
即a=2,不合题意.
当0≤a≤3时,f'(x)=-3x2+a,令f'(x)=0,解得x=
a
3

列表如下:
 (0,
a
3

 
 
a
3

 
 (
a
3
,1)
 
 
 f'(x)
+  0 -
 
 f(x)
 递增  最大值  递减
∴f(x)在x=
a
3
处取得最大值-(
a
3
 3+a•
a
3
=1
,解得a=
3
27
4
<3

当a<0,f'(x)=-3x2+a<0,f(x)在(0,1]上递减,故f(x)无最大值,不合题意.
综上所述,存在实数a=
3
27
4
,使得当x∈(0,1]时,f(x)有最大值1.
点评:本题主要考查函数奇偶性的应用,以及利用导数研究函数的最值,要求熟练掌握导数在研究函数中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案