精英家教网 > 高中数学 > 题目详情
(2012•资阳一模)已知α,β是锐角,且sinα=
5
5
,sinβ=
10
10
,则α+β
=
π
4
π
4
分析:由α与β分别为锐角,根据sinα,sinβ的值,利用同角三角函数间的基本关系求出cosα与cosβ的值,利用两角和与差的正弦函数公式化简sin(α+β),将各种的值代入计算求出值,利用特殊角的三角函数值即可求出α+β的度数.
解答:解:∵α,β是锐角,sinα=
5
5
,sinβ=
10
10

∴α+β∈(0,π),cosα=
1-sin2α
=
2
5
5
,cosβ=
1-sin2β
=
3
10
10

∴cos(α+β)=cosαcosβ-sinαsinβ=
2
5
5
×
3
10
10
-
5
5
×
10
10
=
2
2

则α+β=
π
4
..
故答案为:
π
4
点评:此题考查了两角和与差的余弦函数公式,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•资阳一模)设函数f(x)=
21-x,x≤0
f(x-1),x>0
若关于x的方程f(x)=x+a有且只有两个实根,则实数a的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知向量
a
b
为单位向量,且它们的夹角为60°,则|
a
-3
b
|
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)若a>b,则下列命题成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知函数f(x)=a-
2
2x+1
是奇函数,其反函数为f-1(x),则f-1(
3
5
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知函数f(x)=2lnx-x2+ax,a∈R.
(1)当a=2时,求函数f(x)的图象在x=1处的切线的方程;
(2)若函数f(x)-ax+m=0在[
1e
,e]
上有两个不等的实数根,求实数m的取值范围;
(3)若函数f(x)的图象与x轴交于不同的点A(x1,0),B(x2,0),且0<x1<x2,求证:f′(px1+qx2)<0(其中实数p,q满足0<p≤q,p+q=1)

查看答案和解析>>

同步练习册答案