精英家教网 > 高中数学 > 题目详情
设数列的前n项和为,且成等比数列,当时,
(1)求证:当时,成等差数列;
(2)求的前n项和
(1)证明过程详见解析;(2)

试题分析:
(1)利用之间的关系(),可以得到关于的关系式,再利用十字相乘法可以求的,再根据题意当时,,则有式子成立,即成等差数列.
(2)利用第(1)问的结果可以得到的通项公式,即前11项成等比数列,从11项开始成等差数列,即为一个分段,则其前n项和也要分段讨论,即分为进行求解.利用等差与等比数列前n项和公式即可得到相应的.
试题解析:
(1) 由
              4分
时,,所以
所以当时,成等差数列.                     7分
(Ⅱ)由,得
成等比数列,所以),
,所以,从而
所以,                      11分
所以.                  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

对于项数为的有穷数列数集,记,即中的最大值,并称数列的控制数列.如的控制数列是.
(1)若各项均为正整数的数列的控制数列为,写出所有的
(2)设的控制数列,满足为常数,).求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了保障幼儿园儿童的人身安全,国家计划在甲、乙两省试行政府规范购置校车方案,计划若干时间内(以月为单位)在两省共新购1000辆校车.其中甲省采取的新购方案是:本月新购校车10辆,以后每月的新购量比上一月增加50%;乙省采取的新购方案是:本月新购校车40辆,计划以后每月比上一月多新购m辆.
(1)求经过n个月,两省新购校车的总数S(n);
(2)若两省计划在3个月内完成新购目标,求m的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an},其前n项和为Sn.
(1)若对任意的n∈N,a2n-1,a2n+1,a2n组成公差为4的等差数列,且a1=1,=2013,求n的值;
(2)若数列是公比为q(q≠-1)的等比数列,a为常数,求证:数列{an}为等比数列的充要条件为q=1+.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等差数列中,, 数列是等比数列,且,则的值为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知表示数列的前项和,若对任意的满足,且,则(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等差数列的前项和为,若,则       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.
(1)求a1,a2的值;
(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若an=n2+λn+3(其中λ为实常数),n∈N*,且数列{an}为单调递增数列,则实数λ的取值范围为________.

查看答案和解析>>

同步练习册答案