精英家教网 > 高中数学 > 题目详情

【题目】设椭圆 + =1(a>b>0)的左焦点为F,右顶点为A,离心率为 .已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为 ,求直线AP的方程.

【答案】(Ⅰ)解:设F的坐标为(﹣c,0).
依题意可得
解得a=1,c= ,p=2,于是b2=a2﹣c2=
所以,椭圆的方程为x2+ =1,抛物线的方程为y2=4x.
(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),
联立方程组 ,解得点P(﹣1,﹣ ),故Q(﹣1, ).
联立方程组 ,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣
∴B( ).
∴直线BQ的方程为( )(x+1)﹣( )(y﹣ )=0,
令y=0,解得x= ,故D( ,0).
∴|AD|=1﹣ =
又∵△APD的面积为 ,∴ × =
整理得3m2﹣2 |m|+2=0,解得|m|= ,∴m=±
∴直线AP的方程为3x+ y﹣3=0,或3x﹣ y﹣3=0.
【解析】(Ⅰ)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(Ⅱ)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出答案.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}的通项an=n2(cos2 ﹣sin2 ),其前n项和为Sn , 则S30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,使 成立,则称为函数的一个“生成点”,则函数的“生成点”共有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数是奇函数,求实数的值;

(2)在在(1)的条件下,判断函数与函数的图像公共点个数,并说明理由;

(3)当时,函数的图象始终在函数的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(1,-3,2),=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直线AB上,是否存在一点E,使得?(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体ABCD中,AB,BC,CD两两互相垂直,且BC=CD=1.

(1)求证:平面ACD平面ABC;

(2)求二面角C-AB-D的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

同步练习册答案