精英家教网 > 高中数学 > 题目详情

【题目】已知向量=(1,-3,2),=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直线AB上,是否存在一点E,使得?(O为原点)

【答案】(1);(2)

【解析】

(1)根据空间向量的坐标运算相应公式计算即可

(2)假设存在点E,则+t,再根据⊥b,建立方程可求出t=

(1)2a+b=(2,-6,4)+(-2,1,1)=(0,-5,5),

故|2a+b|==5.

(2)+t=(-3,-1,4)+t(1,-1,-2)=(-3+t,-1-t,4-2t),

⊥b,则·b=0,所以-2(-3+t)+(-1-t)+(4-2t)=0,解得t=,因此存在点E,使得⊥b,此时点E的坐标为E.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,A、B、C、D为平面四边形ABCD的四个内角.

(1)证明:tan
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在区间[﹣ ]上的函数f(x)=1+sinxcos2x,在x=θ时取得最小值,则sinθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD所在的平面与平面AEB垂直,且∠ BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点.

(1)求证:直线DE与平面FGH平行;

(2)若点P在直线GF,且二面角D-BP-A的大小为,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 + =1(a>b>0)的左焦点为F,右顶点为A,离心率为 .已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为 ,求直线AP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3
(1)求数列{an}通项公式;
(2){bn} 为各项非零的等差数列,其前n项和为Sn , 已知S2n+1=bnbn+1 , 求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,E为BB1延长线上的一点,D1E⊥平面D1AC.

(1)求二面角E-AC-D1的大小;

(2)在D1E上是否存在一点P,使A1P∥平面EAC?若存在,求D1P∶PE的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为a的正方体ABCD-A1B1C1D1,AC1BD1相交于点O,则有(  )

A. =2a2 B. a2

C. a2 D. =a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,则异面直线AB1和BC1所成角的正弦值为(  )

A. 1 B. C. D.

查看答案和解析>>

同步练习册答案