精英家教网 > 高中数学 > 题目详情

【题目】在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,则异面直线AB1和BC1所成角的正弦值为(  )

A. 1 B. C. D.

【答案】A

【解析】

设线段A1B1,AB的中点分别为O,D,OC1平面ABB1A1,的方向分别为x,y,z轴的正方向建立空间直角坐标系,利用向量法求异面直线AB1和BC1所成角的正弦值.

设线段A1B1,AB的中点分别为O,D,OC1平面ABB1A1,的方向分别为x,y,z轴的正方向建立空间直角坐标系,如图,

A(-1,0,),B1(1,0,0),B(1,0,),C1(0,,0),

所以=(2,0,-),=(-1,,-).

因为=(2,0,-)·(-1,,-)=0,

所以,即异面直线AB1BC1所成角为直角,则其正弦值为1.

故答案为:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量=(1,-3,2),=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直线AB上,是否存在一点E,使得?(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是 , com∠BDC=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间中三点A-2,0,2,B-1,1,2,C-3,0,4,设a=,b=

1求向量a与向量b的夹角的余弦值;

2若ka+b与ka-2b互相垂直,求实数k的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ,求x的值;
(Ⅱ)记f(x)= ,求f(x)的最大值和最小值以及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,空间四边形ABCD的两条对棱AC,BD互相垂直,AC,BD的长分别为8和2,则平行四边形两条对棱的截面四边形EFGH在平移过程中,面积的最大值是_______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:

①“的充要条件;

②“一元二次不等式的解集为R”的充要条件;

③“直线平行于直线的充分不必要条件;

④“的必要不充分条件.

其中真命题的序号为____________.

查看答案和解析>>

同步练习册答案