精英家教网 > 高中数学 > 题目详情

【题目】已知空间中三点A-2,0,2,B-1,1,2,C-3,0,4,设a=,b=

1求向量a与向量b的夹角的余弦值;

2若ka+b与ka-2b互相垂直,求实数k的值

【答案】1;2

【解析】

试题分析:1第一步,求出两个向量的坐标,第二步,分别计算最后代入公式

2方法一,先得到的坐标然后代入数量积的坐标表示可得的值

方法二,先计算)(然后代入两个向量的坐标表示的值

试题解析:1a=1,1,0,b=-1,0,2 a·b=1,1,0·-1,0,2=-1,

又|a|= |b|=

cos〈a,b〉==- 即向量a与向量b的夹角的余弦值为-

2方法一 ka+b=k-1,k,2).ka-2b=k+2,k,-4,且ka+b与ka-2b互相垂直,

k-1,k,2·k+2,k,-4k-1)(k+2+k2-8=0, k=2或k=-

当ka+b与ka-2b互相垂直时,实数k的值为2或-

方法二 1知|a|=,|b|=,a·b=-1,

ka+b·ka-2b=k2a2-ka·b-2b2=2k2+k-10=0, 得k=2或k=-

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD所在的平面与平面AEB垂直,且∠ BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点.

(1)求证:直线DE与平面FGH平行;

(2)若点P在直线GF,且二面角D-BP-A的大小为,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为a的正方体ABCD-A1B1C1D1,AC1BD1相交于点O,则有(  )

A. =2a2 B. a2

C. a2 D. =a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是不共面的三个向量,则能构成一个基底的一组向量是(  )

A. 2+2 B. 2+2

C. ,2 D. +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1 , Q2 , Q3中最大的是
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1 , p2 , p3中最大的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,则异面直线AB1和BC1所成角的正弦值为(  )

A. 1 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆为抛物线上的动点,过点作圆的两条切线与轴交于

(1)若,求过点的圆的切线方程;

(2)若,求△面积的最小值.

查看答案和解析>>

同步练习册答案