精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形ABCD所在的平面与平面AEB垂直,且∠ BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点.

(1)求证:直线DE与平面FGH平行;

(2)若点P在直线GF,且二面角D-BP-A的大小为,试确定点P的位置.

【答案】(1)见解析;(2)见解析

【解析】

AD中点M,易得M在平面FHG。另一方面,MGDE。故直线DE与平面FGH平行

A为坐标原点。建立合适的坐标系,设=(0,2λ,0),求出平面PBD的一个法向量n1=(5-2λ,,2)。又平面ABP的一个法向量为n2=(0,0,1),cos<n1,n2>=,即可得出λ的值。进而可求出P点坐标。

(1)证明取AD的中点M,连接MH,MG.

G,H分别是AE,BC的中点,

MHAB,GFAB,M∈平面FGH.

MGDE,DE平面FGH,MG平面FGH,

DE∥平面FGH.

(2)如下图

在平面ABE,AAB的垂线,记为AP,AP⊥平面ABCD.

A为原点,AP,AB,AD所在的直线分别为x,y,z轴建立空间直角坐标系A-xyz.

所以A(0,0,0),B(0,4,0),D(0,0,2),E(2,-2,0),G(,-1,0),F(,1,0).

=(0,2,0),=(0,-4,2),=(,-5,0).

=(0,2λ,0),

=(,2λ-5,0).

设平面PBD的法向量为n1=(x,y,z),

y=,z=2,x=5-2λ,

n1=(5-2λ,,2).

又平面ABP的法向量为n2=(0,0,1),

因此cos<n1,n2>=,解得λ=1λ=4.

=4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+lnx.

(1)求函数f(x)的单调区间;

(2)求证:当x>1时, x2+lnx<x3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|﹣2|x+1|的最大值为m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ax+lnx,(x>0),函数g(x)满足g(x)=x﹣1,(x∈R).
(1)若函数f(x)在x=1时存在极值,求a的值;
(2)在(1)的条件下,当x>1时,blnx< ,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数是奇函数,求实数的值;

(2)在在(1)的条件下,判断函数与函数的图像公共点个数,并说明理由;

(3)当时,函数的图象始终在函数的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为 ,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(1,-3,2),=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直线AB上,是否存在一点E,使得?(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cos(2x﹣ )﹣2sinxcosx.(13分)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求证:当x∈[﹣ ]时,f(x)≥﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间中三点A-2,0,2,B-1,1,2,C-3,0,4,设a=,b=

1求向量a与向量b的夹角的余弦值;

2若ka+b与ka-2b互相垂直,求实数k的值

查看答案和解析>>

同步练习册答案