精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是 , com∠BDC=

【答案】
【解析】解:如图,取BC得中点E,
∵AB=AC=4,BC=2,
∴BE= BC=1,AE⊥BC,
∴AE= =
∴S△ABC= BCAE= ×2× =
∵BD=2,
∴S△BDC= S△ABC=
∵BC=BD=2,
∴∠BDC=∠BCD,
∴∠ABE=2∠BDC
在Rt△ABE中,
∵cos∠ABE= =
∴cos∠ABE=2cos2∠BDC﹣1=
∴cos∠BDC=
所以答案是:

【考点精析】通过灵活运用二倍角的余弦公式,掌握二倍角的余弦公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,侧面底面.

(1)求证:平面平面

(2)若,且二面角等于,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20 , 接下来的两项是20 , 21 , 再接下来的三项是20 , 21 , 22 , 依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )
A.440
B.330
C.220
D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm , cm+1 , cm+2 , …是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若 ,则λ+μ的最大值为( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα= ,则cos(α﹣β)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是

1)求n的值;

2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b

为事件A,求事件A的概率;

在区间内任取2个实数,求事件恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD的底面为等腰梯形, AB∥CD,AC⊥BD,垂足为H, PH是四棱锥的高,E为AD中点,设

1)证明:PE⊥BC;

2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知当x∈[0,1]时,函数y=(mx﹣1)2 的图象与y= +m的图象有且只有一个交点,则正实数m的取值范围是(  )
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)

查看答案和解析>>

同步练习册答案