【题目】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα= ,则cos(α﹣β)= .
【答案】﹣
【解析】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,
∴sinα=sinβ= ,cosα=﹣cosβ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1= ﹣1=﹣
方法二:∵sinα= ,
当α在第一象限时,cosα= ,
∵α,β角的终边关于y轴对称,
∴β在第二象限时,sinβ=sinα= ,cosβ=﹣cosα=﹣ ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣ × + × =﹣
:∵sinα= ,
当α在第二象限时,cosα=﹣ ,
∵α,β角的终边关于y轴对称,
∴β在第一象限时,sinβ=sinα= ,cosβ=﹣cosα= ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣ × + × =﹣
综上所述cos(α﹣β)=﹣ ,
所以答案是:﹣
【考点精析】掌握同角三角函数基本关系的运用和两角和与差的余弦公式是解答本题的根本,需要知道同角三角函数的基本关系:;;(3) 倒数关系:;两角和与差的余弦公式:.
科目:高中数学 来源: 题型:
【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是 (t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的 倍,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查结果只有“满意”和“不满意”两种,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )
A.(0,1)B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 | 保留 | 不支持 | |
岁以下 | |||
岁以上(含岁) |
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;
(2)在接受调查的人中,有人给这项活动打出的分数如下:,,,,,,,,,,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果定义在上的函数,对任意的,都有, 则称该函数是“函数”.
(I)分别判断下列函数:①;②; ③,是否为“函数”?(直接写出结论)
(II)若函数是“函数”,求实数的取值范围.
(III)已知是“函数”,且在上单调递增,求所有可能的集合与
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com