精英家教网 > 高中数学 > 题目详情

【题目】定义在区间[﹣ ]上的函数f(x)=1+sinxcos2x,在x=θ时取得最小值,则sinθ=

【答案】
【解析】解:函数f(x)=1+sinxcos2x,
化简得:f(x)=1+sinx(1﹣2sin2x)=sinx﹣2sin3x+1.
令sinx=t,x∈[﹣ ]sinx∈[ ],
则f(x)=sinx﹣2sin3x+1转化为g(t)=t﹣2t3+1, ≤t
那么:g′(t)=1﹣6t2
令g′(t)=0,
解得:t= 或t=
由导函数的性质可知:g(t)在(﹣ )是单调递减,在( )是单调递增,
故而当t= 时,g(t)取得最小值,即f(x)取得最小值;
∵sinx=t,即sinx=
所以得在x=θ时取得最小值,则sinθ=
所以答案是:
【考点精析】关于本题考查的三角函数的最值,需要了解函数,当时,取得最小值为;当时,取得最大值为,则才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设M、N、T是圆C:(x﹣1)2+y2=4上不同三点,若存在正实数a,b,使 =a +b ,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点P(3,0)在圆C:(x﹣m)2+(y﹣2)2=40内,动直线AB过点P且交圆C于A、B两点,若△ABC的面积的最大值为20,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|﹣2|x+1|的最大值为m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,使 成立,则称为函数的一个“生成点”,则函数的“生成点”共有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ax+lnx,(x>0),函数g(x)满足g(x)=x﹣1,(x∈R).
(1)若函数f(x)在x=1时存在极值,求a的值;
(2)在(1)的条件下,当x>1时,blnx< ,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数是奇函数,求实数的值;

(2)在在(1)的条件下,判断函数与函数的图像公共点个数,并说明理由;

(3)当时,函数的图象始终在函数的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(1,-3,2),=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直线AB上,是否存在一点E,使得?(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是 , com∠BDC=

查看答案和解析>>

同步练习册答案