精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线的焦点为其一个焦点,以双曲线的焦点为顶点。
(1)求椭圆的标准方程;
(2)已知点,且分别为椭圆的上顶点和右顶点,点是线段上的动点,求的取值范围。
解:(1)抛物线的焦点,双曲线的焦点…2分
∴可设椭圆的标准方程为,由已知有,且……3分
,∴椭圆的标准方程为。……………………………5分
(2)设,线段方程为,即…………7分
是线段上,∴
,∴,………10分
代入得
………………………12分
,∴的最大值为24,的最小值为
的取值范围是。……………………………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为坐标原点,为椭圆轴正半轴上的焦点,过且斜率为的直线交与两点,点满足.

(1)证明:点上;
(2)设点关于点的对称点为,证明:四点在同一圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆 ()的一个焦点坐标为,且长轴长是短轴长的倍.
(1)求椭圆的方程;
(2)设为坐标原点,椭圆与直线相交于两个不同的点,线段的中点为,若直线的斜率为,求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆x2+(m+3)y2m(m>0)的离心率e,求m的值及椭圆的长轴和短轴的长及顶点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点在椭圆上,分别是该椭圆的两焦点,且,则的面积是(   )
A. 1B. 2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆经过点,对称轴为坐标轴,焦点轴上,离心率
求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知:椭圆的左右焦点为;直线经过交椭圆于两点.
(1)求证:的周长为定值.
(2)求的面积的最大值?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左、右焦点分别是F1,F2,过F2作倾斜角为的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为______

查看答案和解析>>

同步练习册答案