精英家教网 > 高中数学 > 题目详情
13.若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=$\left\{\begin{array}{l}{x(1-x),0≤x≤1}\\{sinπx,1<x≤2}\end{array}\right.$,则f($\frac{21}{6}$)=-$\frac{1}{4}$.

分析 通过函数的奇偶性以及函数的周期性,化简所求表达式,通过分段函数求解即可.

解答 解:∵函数f(x)(x∈R)是周期为4的奇函数,且f(x)=$\left\{\begin{array}{l}{x(1-x),0≤x≤1}\\{sinπx,1<x≤2}\end{array}\right.$,
∴f($\frac{21}{6}$)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-$\frac{1}{2}•(1-\frac{1}{2})$=-$\frac{1}{4}$.
故答案为:-$\frac{1}{4}$.

点评 本题考查函数的值的求法,分段函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列说法错误的是(  )
A.“由直线与圆相切时,圆心与切点连线与该直线垂直,想到平面与球相切时,球心与切点连线与该平面垂直”,以上推理运用的是类比推理
B.命题“?x∈R,x2-2x+4≤0”的否定为“?x∈R,x2-2x+4>0”
C.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
D.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至多有一个实根”时,要做的假设是“方程x2+ax+b=0至少有一个实根”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a1=3,an+1=$\frac{6{a}_{n}}{3-4{{a}_{n}}^{2}}$,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数y=x2+2x+3在m≤x≤0上的最大值为3,最小值为2,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于x不等式mx2+nx-1<0的解集为$\{x|x<\frac{1}{3},或x>\frac{1}{2}\}$,则m+n等于(  )
A.-11B.11C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将函数f(x)=2sin(2x+$\frac{π}{3}$)图象向右平移φ个单位,得到图象关于原点对称,则φ的最小正值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一组数据1,1+d,1+2d,1+3d,1+4d,1+5d,1+6d,若这组数据的方差为1,则d=(  )
A.±$\frac{1}{4}$B.±$\frac{1}{2}$C.±$\frac{1}{28}$D.±$\frac{1}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前n项和为Sn,已知a5=9,S10=100.
(Ⅰ)求通项an
(Ⅱ)记数列{$\frac{{S}_{n}}{n}$}的前n项和为Tn,数列{$\frac{1}{{S}_{n+1}-{T}_{n+1}}$}的前n项和为Un,求证:Un<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.不等式$\frac{{3{x^2}+2x+2}}{{{x^2}+x+1}}≥k$,对任意实数x都成立,满足条件自然数k最大值为a,若已知mn>0,m≠n,试比较log${\;}_{\frac{1}{a}}$(3m2+4mn+n2)与log${\;}_{\frac{1}{a}}$(2m2+6mn)的大小.

查看答案和解析>>

同步练习册答案