【题目】已知函数
,
.
(1)当
为何值时,
轴为曲线
的切线;
(2)用
表示
中的最小值,设函数
,讨论
零点的个数.
【答案】(Ⅰ)
;(Ⅱ)当
或
时,
由一个零点;当
或
时,
有两个零点;当
时,
有三个零点.
【解析】试题分析:(Ⅰ)先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的
值;(Ⅱ)根据对数函数的图像与性质将
分为
研究
的零点个数,若零点不容易求解,则对
再分类讨论.
试题解析:(Ⅰ)设曲线
与
轴相切于点
,则
,
,即
,解得
.
因此,当
时,
轴是曲线
的切线.
(Ⅱ)当
时,
,从而
,
∴
在(1,+∞)无零点.
当
=1时,若
,则
,
,故
=1是
的零点;若
,则
,
,故
=1不是
的零点.
当
时,
,所以只需考虑
在(0,1)的零点个数.
(ⅰ)若
或
,则
在(0,1)无零点,故
在(0,1)单调,而
,
,所以当
时,
在(0,1)有一个零点;当
0时,
在(0,1)无零点.
(ⅱ)若
,则
在(0,
)单调递减,在(
,1)单调递增,故当
=
时,
取的最小值,最小值为
=
.
①若
>0,即
<
<0,
在(0,1)无零点.
②若
=0,即
,则
在(0,1)有唯一零点;
③若
<0,即
,由于
,
,所以当
时,
在(0,1)有两个零点;当
时,
在(0,1)有一个零点.…10分
综上,当
或
时,
由一个零点;当
或
时,
有两个零点;当
时,
有三个零点.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2﹣a)lnx+
+2ax(a≤0).
(1)当a=0时,求f(x)的极值;
(2)当a<0时,讨论f(x)的单调性;
(3)若对任意的a∈(﹣3,﹣2),x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数y=f(x)为减函数,且函数y=f(x﹣1)的图象关于点(1,0)对称,若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,则x﹣b的取值范围是( )
A.[﹣2,0]
B.[﹣2,2]
C.[0,2]
D.[0,4]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,四边形ABCD为边长为4的正方形,M是BC的中点,EF∥平面ABCD,且EF=2,AE=DE=BF=CF=
. ![]()
(1)求证:ME⊥平面ADE;
(2)求二面角B﹣AE﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,离心率为
,并过点
.
(1)求椭圆方程;
(2)若直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点。求证:直线
过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售,已知一只花篮需要用铜丝200米,铁丝300米;编制一只花盆需要100米,铁丝300米,设该厂用所有原来编制个花篮
,
个花盆.
(Ⅰ)列出
满足的关系式,并画出相应的平面区域;
(Ⅱ)若出售一个花篮可获利300元,出售一个花盘可获利200元,那么怎样安排花篮与花盆的编制个数,可使得所得利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中
是省外游客,其余是省内游客.在省外游客中有
持金卡,在省内游客中有
持银卡.
(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(Ⅱ)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com