精英家教网 > 高中数学 > 题目详情

已知:数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*).
(Ⅰ)求:a1,a2的值;
(Ⅱ)求:数列{an}的通项公式;
(Ⅲ)若数列{bn}的前n项和为Tn,且满足bn=nan,(n∈N*),求数列{bn}的前n项和Tn

解:(Ⅰ)∵Sn=2an-n,
令n=1,解得a1=1;
令n=2,解得a2=3 …(2分)
(Ⅱ)∵Sn=2an-n,
所以Sn-1=2an-1-(n-1),(n≥2)
两式相减得 an=2an-1+1 …(4分)
所以an+1=2(an-1+1),(n≥2)…(5分)
又因为a1+1=2
所以数列{an+1}是首项为2,公比为2的等比数列 …(6分)
所以,即通项公式 …(7分)
(Ⅲ)∵bn=nan
所以
所以+…+(n•2n-n)
…(9分)


①-②得
= …(11分)
=2+(n-1)•2n+1 …(12分)
所以 …(13分)
分析:(Ⅰ)由Sn=2an-n,分别令n=1,2可求a1,a2
(Ⅱ)由Sn=2an-n,可知Sn-1=2an-1-(n-1),(n≥2),两式相减可得 an与an-1的关系,构造等比数列即可求解an+1,然后求出an
(Ⅲ)由bn=nan,结合 数列的特点可利用分组求和,然后利用等差数列的求和及错位相减求和即可
点评:本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式,分组求和方法及错位相减求和方法的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•济南一模)已知:数列{an}的前n项和为Sn,a1=3且当n≥2n∈N+满足Sn-1是an与-3的等差中项.
(1)求a2,a3,a4
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数数列{an}的前n项和Sn满足Sn=
1
8
(a n+2)2
(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=
8
anan+1
,(n∈N*)且数列{bn}的前n项和为Tn,如果Tn<m2-m-5对一切n∈N*成立,求正数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个数列{an}的各项是1或2.首项为1,且在第k个1和第k+1个1之间有f(k)个2,记数列的前n项的和为Sn
(1)若f(k)=2k-1,求S100
(2)若f(k)=2k-1,求S2011

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:数列{an}的前n项和为Sn,满足a1=1,当n∈N+时,Sn=an-n-1.
(1)求a2,a3,a4
(2)猜想an,并用数学归纳法证明你的猜想;
(3)已知
lim
n→∞
an
an+1+(a+1)n
=
1
2
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数列{an}的前n项和为Sn,且有Sn=
1
4
(an+1)2
,数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为
1
2
的等比数列.
(1)求证数列{an}是等差数列;
(2)若cn=an•(2-bn),求数列{cn}的前n项和Tn
(3)在(2)条件下,是否存在常数λ,使得数列(
Tn
an+2
)
为等比数列?若存在,试求出λ;若不存在,说明理由.

查看答案和解析>>

同步练习册答案