精英家教网 > 高中数学 > 题目详情
19.等差数列{an}的公差为d,关于x的不等式$\frac{d}{2}$x2+(a1-$\frac{d}{2}$)x+c≥0的解集是[0,22],则使得数列{an}的前n项和大于零的最大的正整数n的值是(  )
A.11B.12C.13D.不能确定

分析 关于x的不等式$\frac{d}{2}$x2+(a1-$\frac{d}{2}$)x+c≥0的解集是[0,22],利用根与系数的关系可得:0+22=-$\frac{{a}_{1}-\frac{d}{2}}{\frac{d}{2}}$,$\frac{d}{2}$<0,
化为:a1=-$\frac{21d}{2}$,再利用通项公式即可得出.

解答 解:关于x的不等式$\frac{d}{2}$x2+(a1-$\frac{d}{2}$)x+c≥0的解集是[0,22],
∴0+22=-$\frac{{a}_{1}-\frac{d}{2}}{\frac{d}{2}}$,$\frac{d}{2}$<0,
化为:a1=-$\frac{21d}{2}$,
∴a11=a1+10d>0,a12=a1+11d<0,
a11=a1+10d>0,a12=a1+11d<0,
故使数列{an}的前n项和Sn最大的正整数n的值是11.
故选:A.

点评 本题考查了等差数列的通项公式及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若P(A+B)=1,则事件A与B的关系是(  )
A.A、B是互斥事件B.A、B是对立事件C.A、B不是互斥事件D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)的定义域为[-2,2],若对于任意的x,y∈[-2,2],都有f(x+y)=f(x)+f(y),且当x>0时,有f(x)>0
(1)证明:f(x)为奇函数;
(2)若f(1)=3求f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在所有首位不为0的6位储蓄卡的密码中,任取一个密码,则头两位密码都是6的概率为$\frac{1}{90}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={y|y=log${\;}_{\frac{1}{2}}$x,x>1},B={y|y=2x,x<1},则A∩B=(  )
A.{y|0$<y<\frac{1}{2}$}B.C.{y|$\frac{1}{2}$<y<1}D.{y|0<y<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.
(1)证明:AG∥平面BDE;
(2)求二面角E-BD-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等差数列{an}的公差为d,关于x的不等式$\frac{d}{2}$x2+(a1-$\frac{d}{2}$)x+c≥0的解集是[0,12],则使得数列{an}的前n项和大于零的最大的正整数n的值是(  )
A.6B.11或12C.12D.12或13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=log4(ax2-4x+a)(a∈R),若f(x)的值域为R,则实数a的取值范围是(  )
A.[0,2]B.(2,+∞)C.(0,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,根据图象:
(1)写出函数f(x),x∈R的增区间并将图象补充完整;
(2)写出函数f(x),x∈R的解析式;
(3)若函数g(x)=f(x)-4ax+2,x∈[1,3],求函数g(x)的最小值.

查看答案和解析>>

同步练习册答案