精英家教网 > 高中数学 > 题目详情
4.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.
(1)证明:AG∥平面BDE;
(2)求二面角E-BD-G的余弦值.

分析 (Ⅰ)根据题意以C为原点,CD,CB,CE分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明AG∥平面BDE.
(Ⅱ)求出平面BDG的一个法向量和平面BDE的一个法向量,利用向量法能求出二面角E-BD-G的余弦值.

解答 证明:(Ⅰ)由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE?平面BCEG,
∴EC⊥平面ABCD.…(2分)
根据题意以C为原点,CD,CB,CE分别为x,y,z轴,建立如图所示的空间直角坐标系,
则B(0,2,0),D(2,0,0),E(0,0,2),A(2,1,0)G(0,2,1)….(2分)
设平面BDE的法向量为$\overrightarrow{m}$=(x,y,z),
∵$\overrightarrow{EB}=(0,2,-2)$,$\overrightarrow{ED}$=(2,0,-2),
∴$\left\{\begin{array}{l}{\overrightarrow{EB}•\overrightarrow{m}=y-z=0}\\{\overrightarrow{ED}•\overrightarrow{m}=x-z=0}\end{array}\right.$,∴x=y=z,
∴平面BDE的一个法向量为$\overrightarrow{m}$=(1,1,1),…..(4分)
∵$\overrightarrow{AG}$=(-2,1,1),∴$\overrightarrow{AG}•\overrightarrow{m}$=-2+1+1=0,∴$\overrightarrow{AG}$⊥$\overrightarrow{n}$,
∵AG?平面BDE,
∴AG∥平面BDE.….(5分)
解:(Ⅱ)设平面BDG的法向量为$\overrightarrow{n}$=(x,y,z),….(6分)
∵$\overrightarrow{BD}$=(2,-2,0),$\overrightarrow{BG}$=(0,0,1),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=2x-2y=0}\\{\overrightarrow{n}•\overrightarrow{BG}=z=0}\end{array}\right.$,
取x=1,得平面BDG的一个法向量为$\overrightarrow{n}$=(1,1,0),….(7分)
设二面角E-BD-G的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}•\sqrt{2}}$=$\frac{\sqrt{6}}{3}$,….(9分)
故二面角E-BD-G的余弦值为$\frac{\sqrt{6}}{3}$….(10分)

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知2a+3b=4,则4a+8b的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{x^2}$+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)已知不等式f(x)>0在(0,1)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=3${\;}^{{x}^{2}}$的值域为(  )
A.[0,+∞)B.(-∞,0]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}的公差为d,关于x的不等式$\frac{d}{2}$x2+(a1-$\frac{d}{2}$)x+c≥0的解集是[0,22],则使得数列{an}的前n项和大于零的最大的正整数n的值是(  )
A.11B.12C.13D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则z=$\frac{2}{a}$+$\frac{5}{b}$的最小值是(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.2$\sqrt{10}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足xf′(x)>f(x),则不等式(x-1)f(x+1)>f(x2-1)的解集是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算下列各式的值:
(1)已知5x=3y=45,求$\frac{1}{x}$+$\frac{2}{y}$的值;
(2)(log38+log94)(log427+log89).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知cosα=-$\frac{1}{3}$,且α∈(-π,0),则α=arccos$\frac{1}{3}$-π(用反三角函数表示).

查看答案和解析>>

同步练习册答案