分析 (Ⅰ)根据题意以C为原点,CD,CB,CE分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明AG∥平面BDE.
(Ⅱ)求出平面BDG的一个法向量和平面BDE的一个法向量,利用向量法能求出二面角E-BD-G的余弦值.
解答 证明:(Ⅰ)由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE?平面BCEG,![]()
∴EC⊥平面ABCD.…(2分)
根据题意以C为原点,CD,CB,CE分别为x,y,z轴,建立如图所示的空间直角坐标系,
则B(0,2,0),D(2,0,0),E(0,0,2),A(2,1,0)G(0,2,1)….(2分)
设平面BDE的法向量为$\overrightarrow{m}$=(x,y,z),
∵$\overrightarrow{EB}=(0,2,-2)$,$\overrightarrow{ED}$=(2,0,-2),
∴$\left\{\begin{array}{l}{\overrightarrow{EB}•\overrightarrow{m}=y-z=0}\\{\overrightarrow{ED}•\overrightarrow{m}=x-z=0}\end{array}\right.$,∴x=y=z,
∴平面BDE的一个法向量为$\overrightarrow{m}$=(1,1,1),…..(4分)
∵$\overrightarrow{AG}$=(-2,1,1),∴$\overrightarrow{AG}•\overrightarrow{m}$=-2+1+1=0,∴$\overrightarrow{AG}$⊥$\overrightarrow{n}$,
∵AG?平面BDE,
∴AG∥平面BDE.….(5分)
解:(Ⅱ)设平面BDG的法向量为$\overrightarrow{n}$=(x,y,z),….(6分)
∵$\overrightarrow{BD}$=(2,-2,0),$\overrightarrow{BG}$=(0,0,1),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=2x-2y=0}\\{\overrightarrow{n}•\overrightarrow{BG}=z=0}\end{array}\right.$,
取x=1,得平面BDG的一个法向量为$\overrightarrow{n}$=(1,1,0),….(7分)
设二面角E-BD-G的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}•\sqrt{2}}$=$\frac{\sqrt{6}}{3}$,….(9分)
故二面角E-BD-G的余弦值为$\frac{\sqrt{6}}{3}$….(10分)
点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 12 | C. | 13 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{10}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com