精英家教网 > 高中数学 > 题目详情
14.已知cosα=-$\frac{1}{3}$,且α∈(-π,0),则α=arccos$\frac{1}{3}$-π(用反三角函数表示).

分析 根据反余弦函数的定义与性质,即可得出结果.

解答 解:∵arccos(-$\frac{1}{3}$)=π-arccos$\frac{1}{3}$,
又cosα=-$\frac{1}{3}$,且α∈(-π,0),
∴-α∈(0,π),
∴-α=π-arccos$\frac{1}{3}$;
即α=-π+arccos$\frac{1}{3}$.
故答案为:-π+arccos$\frac{1}{3}$.

点评 本题考查了反余弦函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.
(1)证明:AG∥平面BDE;
(2)求二面角E-BD-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在R上的奇函数,当x>0时,f(x)=x2+2x-1
(1)求f(-3)的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=log${\;}_{\frac{1}{3}}$(x2-9)的单调递增区间是(  )
A.(-∞,0)B.(-∞,-3)C.(3,+∞)D.(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,根据图象:
(1)写出函数f(x),x∈R的增区间并将图象补充完整;
(2)写出函数f(x),x∈R的解析式;
(3)若函数g(x)=f(x)-4ax+2,x∈[1,3],求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,点列{An}、{Bn}分别在锐角两边(不在锐角顶点),且|AnAn+1|=|An+1An+2|,An≠An+2,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*(P≠Q表示点P与Q不重合),若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )
A.{dn}是等差数列B.{Sn}是等差数列
C.{d${\;}_{n}^{2}$}是等差数列D.{S${\;}_{n}^{2}$}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A、B是抛物线C:x2=2py(p>0)上不同的两点,点D在抛物线C的准线l上,且焦点F到准线l的距离为2.
(1)求抛物线C的方程;
(2)若点F与原点O分别在直线AB与直线AD上,探究:直线BD与y轴间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.把函数y=sin2x的图象向左平移$\frac{π}{6}$个单位长度,再把函数图象上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=f(x)的图象,则函数y=f(x)的图象上最高点与最低点之间的距离的最小值为(  )
A.$\sqrt{{π^2}+4}$B.$2\sqrt{{π^2}+1}$C.$\sqrt{\frac{π^2}{4}+4}$D.$\sqrt{\frac{π^2}{16}+4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm2(版心是指图中的长方形阴影部分,dm为长度单位分米),上、下两边各空2dm,左、右两边各空1dm.
(1)若设版心的高为xdm,求海报四周空白面积关于x的函数S(x)的解析式;
(2)要使海报四周空白面积最小,版心的高和宽该如何设计?

查看答案和解析>>

同步练习册答案