精英家教网 > 高中数学 > 题目详情
2.函数y=log${\;}_{\frac{1}{3}}$(x2-9)的单调递增区间是(  )
A.(-∞,0)B.(-∞,-3)C.(3,+∞)D.(-3,0)

分析 由对数式的真数大于0求得函数的定义域,再由内函数在(-∞,-3)上为减函数,外函数y=log${\;}_{\frac{1}{3}}$t为(0,+∞)的减函数得答案.

解答 解:由x2-9>0,得x<-3或x>3,
当x∈(-∞,-3)时,函数t=x2-9为减函数,
又外函数y=log${\;}_{\frac{1}{3}}$t为(0,+∞)的减函数,
∴函数y=log${\;}_{\frac{1}{3}}$(x2-9)的单调递增区间是(-∞,-3).
故选:B.

点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数f(x)=3${\;}^{{x}^{2}}$的值域为(  )
A.[0,+∞)B.(-∞,0]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算下列各式的值:
(1)已知5x=3y=45,求$\frac{1}{x}$+$\frac{2}{y}$的值;
(2)(log38+log94)(log427+log89).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,椭圆的右顶点为A,点P在椭圆上,且PF1⊥x轴,直线AP交y轴于点Q,若$\overrightarrow{AQ}$=3$\overrightarrow{QP}$,则椭圆的离心率等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)过点(2,0),离心率为$\frac{1}{2}$.
(1)求C的方程;
(2)过点(1,0)且斜率为1的直线l与椭圆C相交于A,B两点,求AB的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合M={x|x2-3x≤10},N={x|a-1≤x≤2a+1}.
(1)若a=2,求(∁RM)∪N;
(2)若M∪N=M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知cosα=-$\frac{1}{3}$,且α∈(-π,0),则α=arccos$\frac{1}{3}$-π(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x(1-a|x|)+1(a>0),若f(x+a)≤f(x)对任意的x∈R恒成立,则实数a的取值范围是[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设命题p:函数f(x)=lg(-mx2+2x-m)的定义域为R;
命题q:函数g(x)=4lnx+$\frac{1}{2}{x^2}$-(m-1)x的图象上任意一点处的切线斜率恒大于2,
若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案