分析 若命题p∧q为假,p∨q为真,命题p,q一真一假,进而可得满足条件的m的取值范围.
解答 (本小题满分10分)
解:若p为真命题,则-mx2+2x-m>0恒成立,即mx2-2x+m<0恒成立.…(1分)
当m=0时,不等式为-2x<0,解得x>0,显然不成立;
当m≠0时,$\left\{\begin{array}{l}m<0\\△={(-2)^2}-4m×m<0\end{array}\right.$,解得m<-1.
∴若p为真命题,则m<-1.…(4分)
若q为真命题,则当x>-1时,$g'(x)=\frac{4}{x}+x-m+1>2$,$m<\frac{4}{x}+x-1$,
∵$\frac{4}{x}+x-1≥2\sqrt{4}-1=3$,当且仅当x=1时取等号,∴m<3.…(6分)
∵“p∨q”为真命题,“p∧q”为假命题,∴p真q假或p假q真.…(8分)
若p真q假,则$\left\{\begin{array}{l}m<-1\\ m≥3\end{array}\right.$,∴m∈∅;若p假q真,则$\left\{\begin{array}{l}m≥-1\\ m<3\end{array}\right.$,∴-1≤m<3.
综上所述,实数m得取值范围为m∈[-1,3).…(10分)
点评 本题以命题的真假判断与应用为载体,考查了复合命题,对数函数的图象和性质,直线斜率等知识点,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,-3) | C. | (3,+∞) | D. | (-3,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{{π^2}+4}$ | B. | $2\sqrt{{π^2}+1}$ | C. | $\sqrt{\frac{π^2}{4}+4}$ | D. | $\sqrt{\frac{π^2}{16}+4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com