精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的前n项和为Sn,且2Sn=1-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设${b_n}={log_{\frac{1}{3}}}{a_n}$,Cn=$\frac{{\sqrt{n+1}-\sqrt{n}}}{{\sqrt{b_nb_{n+1}}}}$,记数列{Cn}的前n项和Tn,求证:Tn<1.

分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1}}&{n=1}\\{{S}_{n}-{S}_{n-1}}&{n≥2}\end{array}\right.$,可得数列{an}的递推关系,从而可判断该数列为等比数列,得解;
(2)由${c}_{n}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}$,用裂项相消法易求.

解答 解:(1)当n=1时,由2S1=1-a1得:${a_1}=\frac{1}{3}$.           
由2Sn=1-an
∴2Sn-1=1-an-1 (n≥2)②
上面两式相减,得:${a_n}=\frac{1}{3}{a_{n-1}}$.(n≥2)
∴数列{an}是首项为$\frac{1}{3}$,公比为$\frac{1}{3}$的等比数列.
∴${a_n}=\frac{1}{3^n}(n∈{N^*})$.
(2)∵${a_n}=\frac{1}{3^n}(n∈{N^*})$,
∴${b_n}={log_{\frac{1}{3}}}{a_n}={log_{\frac{1}{3}}}{(\frac{1}{3})^n}$=n.  
∴$C_n=\frac{{\sqrt{n+1}-\sqrt{n}}}{{\sqrt{n(n+1)}}}=\frac{1}{{\sqrt{n}}}-\frac{1}{{\sqrt{n+1}}}$,
$\begin{array}{l}{∴T}_n=C_1+C_2+…+C_n\\=(1-\frac{1}{{\sqrt{2}}})+(\frac{1}{{\sqrt{2}}}-\frac{1}{{\sqrt{3}}})+(\frac{1}{{\sqrt{3}}}-\frac{1}{{\sqrt{4}}})+…+(\frac{1}{{\sqrt{n}}}-\frac{1}{{\sqrt{n+1}}})=1-\frac{1}{{\sqrt{n+1}}}\end{array}$,
∵n∈N*
∴${T_n}=1-\frac{1}{{\sqrt{n+1}}}$<1.

点评 本题考查数列的递推式和数列的求和方法.第一问解题关键在于公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1}}&{n=1}\\{{S}_{n}-{S}_{n-1}}&{n≥2}\end{array}\right.$的运用,考查了转化的思想方法.第二问考查数列求和,根据通项公式的结构特点裂项求和是解题关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)过点(2,0),离心率为$\frac{1}{2}$.
(1)求C的方程;
(2)过点(1,0)且斜率为1的直线l与椭圆C相交于A,B两点,求AB的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出以下四个判断,其中正确的判断是(  )
A.命题p:?α∈R,使幂函数y=xα图象经过第四象限;命题q:在锐角△ABC中,sinA>cosB,则p∧q为真
B.命题:“正切函数y=tan x在定义域内为增函数”的逆否命题为真
C.在区间(a,b)连续的函数f(x),f(a)•f(b)<0是f(x)在区间(a,b)内有零点的充要条件
D.命题p:函数f(x)=x2-2x仅有两个零点,则?p是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=|x-2|+|5-x|,则函数f(x)的最小值为(  )
A.7B.2C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x>2}\end{array}\right.$,若方程f(x)-a=0有三个不同的实数根,则实数a的取值范围为(  )
A.(1,3)B.(0,3)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设命题p:函数f(x)=lg(-mx2+2x-m)的定义域为R;
命题q:函数g(x)=4lnx+$\frac{1}{2}{x^2}$-(m-1)x的图象上任意一点处的切线斜率恒大于2,
若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题中:
①在△ABC中,sinA>sinB,则A>B;
②若a>0,b>0,a+b=4,则$\sqrt{a+3}+\sqrt{b+2}$的最大值为3$\sqrt{2}$;
③已知函数f(x)是一次函数,若数列{an}的通项公式为an=f(n),则该数列是等差数列;
④数列{bn}的通项公式为bn=qn,则数列{bn}的前n项和Sn=$\frac{{q(1-{q^n})}}{1-q}$.
正确的命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)将一颗骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,以分别得到的点数(m,n)作为点P的坐标(m,n),求:点P落在区域$\left\{\begin{array}{l}x+y≤6\\ x≥0\\ y≥0\end{array}\right.$内的概率;
(2)在区间[1,6]上任取两个实数(m,n),求:使方程x2+mx+n2=0有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\sqrt{4-x}$+lg(x-1)+(x-3)0 的定义域为(  )
A.{x|1<x≤4}B.{x|1<x≤4且x≠3}C.{x|1≤x≤4且x≠3}D.{x|x≥4}

查看答案和解析>>

同步练习册答案