分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1}}&{n=1}\\{{S}_{n}-{S}_{n-1}}&{n≥2}\end{array}\right.$,可得数列{an}的递推关系,从而可判断该数列为等比数列,得解;
(2)由${c}_{n}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}$,用裂项相消法易求.
解答 解:(1)当n=1时,由2S1=1-a1得:${a_1}=\frac{1}{3}$.
由2Sn=1-an①
∴2Sn-1=1-an-1 (n≥2)②
上面两式相减,得:${a_n}=\frac{1}{3}{a_{n-1}}$.(n≥2)
∴数列{an}是首项为$\frac{1}{3}$,公比为$\frac{1}{3}$的等比数列.
∴${a_n}=\frac{1}{3^n}(n∈{N^*})$.
(2)∵${a_n}=\frac{1}{3^n}(n∈{N^*})$,
∴${b_n}={log_{\frac{1}{3}}}{a_n}={log_{\frac{1}{3}}}{(\frac{1}{3})^n}$=n.
∴$C_n=\frac{{\sqrt{n+1}-\sqrt{n}}}{{\sqrt{n(n+1)}}}=\frac{1}{{\sqrt{n}}}-\frac{1}{{\sqrt{n+1}}}$,
$\begin{array}{l}{∴T}_n=C_1+C_2+…+C_n\\=(1-\frac{1}{{\sqrt{2}}})+(\frac{1}{{\sqrt{2}}}-\frac{1}{{\sqrt{3}}})+(\frac{1}{{\sqrt{3}}}-\frac{1}{{\sqrt{4}}})+…+(\frac{1}{{\sqrt{n}}}-\frac{1}{{\sqrt{n+1}}})=1-\frac{1}{{\sqrt{n+1}}}\end{array}$,
∵n∈N*,
∴${T_n}=1-\frac{1}{{\sqrt{n+1}}}$<1.
点评 本题考查数列的递推式和数列的求和方法.第一问解题关键在于公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1}}&{n=1}\\{{S}_{n}-{S}_{n-1}}&{n≥2}\end{array}\right.$的运用,考查了转化的思想方法.第二问考查数列求和,根据通项公式的结构特点裂项求和是解题关键.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题p:?α∈R,使幂函数y=xα图象经过第四象限;命题q:在锐角△ABC中,sinA>cosB,则p∧q为真 | |
| B. | 命题:“正切函数y=tan x在定义域内为增函数”的逆否命题为真 | |
| C. | 在区间(a,b)连续的函数f(x),f(a)•f(b)<0是f(x)在区间(a,b)内有零点的充要条件 | |
| D. | 命题p:函数f(x)=x2-2x仅有两个零点,则?p是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (0,3) | C. | (0,2) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1<x≤4} | B. | {x|1<x≤4且x≠3} | C. | {x|1≤x≤4且x≠3} | D. | {x|x≥4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com