精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x>2}\end{array}\right.$,若方程f(x)-a=0有三个不同的实数根,则实数a的取值范围为(  )
A.(1,3)B.(0,3)C.(0,2)D.(0,1)

分析 根据分段函数f(x)的解析式,作出分段函数的图象,方程f(x)-a=0有三个不同的实数根,即为函数y=f(x)的图象与y=a的图象有三个不同的交点,结合函数的图象即可求得实数a的取值范围.

解答 解:∵函数函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x>2}\end{array}\right.$,
∴作出函数f(x)的图象如右图所示,
∵方程f(x)-a=0有三个不同的实数根,
则函数y=f(x)的图象与y=a的图象有三个不同的交点,
根据图象可知,a的取值范围为0<a<1.
故选:D.

点评 本题考查了分段函数的应用,考查了分段函数图象的作法.解题的关键在于正确作出函数图象,能将方程f(x)-a=0有三个不同的实数根的问题转化为函数图象有三个不同的交点的问题.解题中综合运用了数形结合和转化化归的数学思想方法.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左右焦点分别为F1,F2,则在椭圆C上满足∠F1PF2=$\frac{π}{2}$的点P的个数有(  )
A.0个B.1个C.2 个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sinx-x,若f(cos2θ+2msinθ)+f(-2-2m)>0对任意的θ∈(0,$\frac{π}{2}$)恒成立,则实数m的取值范围为[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.A={x|3<x≤7},B={x|4<x≤10},则A∪B={x|3<x≤10}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等差数列{an}中,a8=8,则S15的值为120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且2Sn=1-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设${b_n}={log_{\frac{1}{3}}}{a_n}$,Cn=$\frac{{\sqrt{n+1}-\sqrt{n}}}{{\sqrt{b_nb_{n+1}}}}$,记数列{Cn}的前n项和Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2x2-3x)•ex
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)若方程(2x-3)•ex=$\frac{a}{x}$有且仅有一个实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{x^2}{9}-\frac{y^2}{a}$=1的右焦点为$(\sqrt{13},0)$,则该双曲线的虚轴长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,E,F分别为AB,PC的中点,AB=$\sqrt{2}$AD.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:DE⊥PC.

查看答案和解析>>

同步练习册答案