精英家教网 > 高中数学 > 题目详情
20.证明下列不等式:
(1)设a,b,c∈R*,且满足条件a+b+c=1,证明:$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$≥9
(2)已知a≥0,证明:$\sqrt{a+3}+\sqrt{a}$<$\sqrt{a+2}+\sqrt{a+1}$.

分析 (1)依题意,可得$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$=(a+b+c)($\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$)=3+($\frac{b}{a}$+$\frac{a}{b}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}+\frac{b}{c}$),利用基本不等式即可证得结论;
(2)利用分析法证明即可.

解答 证明:(1)∵a>0,b>0,c>0,且a+b+c=1,
∴$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$=(a+b+c)($\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$)=3+($\frac{b}{a}$+$\frac{a}{b}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}+\frac{b}{c}$)≥3+2+2+2=9(当且仅当a=b=c时取“=”)(证毕).
(2)要证明$\sqrt{a+3}+\sqrt{a}$<$\sqrt{a+2}+\sqrt{a+1}$,
只要证明($\sqrt{a+3}+\sqrt{a}$)2<($\sqrt{a+2}+\sqrt{a+1}$)2
只要证明a(a+3)<(a+2)(a+1),
只要证明0<2,显然成立,
故原不等式成立

点评 本题考查不等式的证明,着重考查分析法、基本不等式的应用,注意等号成立的条件,考查推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,椭圆的右顶点为A,点P在椭圆上,且PF1⊥x轴,直线AP交y轴于点Q,若$\overrightarrow{AQ}$=3$\overrightarrow{QP}$,则椭圆的离心率等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x(1-a|x|)+1(a>0),若f(x+a)≤f(x)对任意的x∈R恒成立,则实数a的取值范围是[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求$f(\frac{7π}{8})$的值;
(2)求函数g(x)=f(x)+f(x+$\frac{π}{4}$)的对称轴与单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=|x-2|+|5-x|,则函数f(x)的最小值为(  )
A.7B.2C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产用水,已知:该厂生活用水每小时10吨,工业用水总量W(吨)与时间t(单位:小时,规定早晨六点时t=0)的函数关系为W=100$\sqrt{t}$,水塔的进水量有10级,第一级每小时水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设命题p:函数f(x)=lg(-mx2+2x-m)的定义域为R;
命题q:函数g(x)=4lnx+$\frac{1}{2}{x^2}$-(m-1)x的图象上任意一点处的切线斜率恒大于2,
若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某风景区水面游览中心计划国庆节当日投入之多3艘游船供游客观光,过去10年的数据资料显示每年国庆节当日客流量X(单位:万人)都大于1,并把客流量分成三段整理得下表:
国庆节当日客流量X1<X<33≤X≤5X>5
频数244
以这10年的数据资料记录的隔断客流量的频率作为每年客流量在隔断发生的概率,且每年国庆节当日客流量相互独立.
(1)求未来连续3年国庆节当日中,恰好有1年国庆节当日客流量超过5万人的概率;
(2)该水面游览中心希望投入的游船尽可能使用,但每年国庆节当日游船最多使用量:(单位:艘)受当日客流量X(单位:万人)的限制,其关联关系如下表:
国庆节当日客流量X1<X<33≤X≤5X>5
游船最多使用量123
若某艘游船国庆节当日使用,则水面游览中心国庆节当日可获得利润3万元,若某艘游船国庆节当日不使用,则水面游览中心国庆节当日亏损0.5万元,记Y(单位:万元)表示该水面游览中心国庆节当日获得总利润,当Y的数学期望最大时称水面游览中心在国庆节当日效益最佳,问该水面游览中心的国庆节当日应投入多少艘游船才能使该水面游览中心在国庆节当日效益最佳?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三棱锥S-ABC的各项顶点都在一个表面积为4π的球表面上,球心O在AB上,SO⊥平面ABC,AC=$\sqrt{2}$,则三棱锥S-ABC的表面积为2+$\sqrt{3}$.

查看答案和解析>>

同步练习册答案