分析 (1)依题意,可得$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$=(a+b+c)($\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$)=3+($\frac{b}{a}$+$\frac{a}{b}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}+\frac{b}{c}$),利用基本不等式即可证得结论;
(2)利用分析法证明即可.
解答 证明:(1)∵a>0,b>0,c>0,且a+b+c=1,
∴$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$=(a+b+c)($\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$)=3+($\frac{b}{a}$+$\frac{a}{b}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}+\frac{b}{c}$)≥3+2+2+2=9(当且仅当a=b=c时取“=”)(证毕).
(2)要证明$\sqrt{a+3}+\sqrt{a}$<$\sqrt{a+2}+\sqrt{a+1}$,
只要证明($\sqrt{a+3}+\sqrt{a}$)2<($\sqrt{a+2}+\sqrt{a+1}$)2,
只要证明a(a+3)<(a+2)(a+1),
只要证明0<2,显然成立,
故原不等式成立
点评 本题考查不等式的证明,着重考查分析法、基本不等式的应用,注意等号成立的条件,考查推理论证能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 国庆节当日客流量X | 1<X<3 | 3≤X≤5 | X>5 |
| 频数 | 2 | 4 | 4 |
| 国庆节当日客流量X | 1<X<3 | 3≤X≤5 | X>5 |
| 游船最多使用量 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com