分析 依题意,f由(x+a)≤f(x)对任意的x∈R恒成立,在同一坐标系中作出满足题意的y=f(x+a)与y=f(x)的图象,可得x(1+ax)+1≥(x+a)[1-a(x+a)]+1恒成立,整理后为二次不等式,利用△≤0即可求得实数a的取值范围.
解答 解:∵f(x)=x(1-a|x|)+1=$\left\{\begin{array}{l}{x(1+ax)+1,x<0}\\{x(1-ax)+1,x≥0}\end{array}\right.$=$\left\{\begin{array}{l}{{a(x+\frac{1}{2a})}^{2}+1-\frac{1}{4a},x<0}\\{-{a(x-\frac{1}{2a})}^{2}+1+\frac{1}{4a},x≥0}\end{array}\right.$(a>0),
∴f(x+a)=(x+a)(1-a|x+a|)+1,
∵f(x+a)≤f(x)对任意的x∈R恒成立,
在同一坐标系中作出满足题意的y=f(x+a)与y=f(x)的图象如下:![]()
∴x(1+ax)+1≥(x+a)[1-a(x+a)]+1恒成立,
即x+ax2+1≥-a(x2+2ax+a2)+x+a+1,
整理得:2x2+2ax+a2-1≥0恒成立,
∴△=4a2-4×2(a2-1)≤0,
解得:a≥$\sqrt{2}$.
故答案为:[$\sqrt{2}$,+∞).
点评 本题考查函数恒成立问题,深刻理解f(x+a)≤f(x)对任意的x∈R恒成立,得到x(1+ax)+1≥(x+a)[1-a(x+a)]+1恒成立是解决问题的关键,也是难点,考查作图、分析与运算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,-3) | C. | (3,+∞) | D. | (-3,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {dn}是等差数列 | B. | {Sn}是等差数列 | ||
| C. | {d${\;}_{n}^{2}$}是等差数列 | D. | {S${\;}_{n}^{2}$}是等差数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{{π^2}+4}$ | B. | $2\sqrt{{π^2}+1}$ | C. | $\sqrt{\frac{π^2}{4}+4}$ | D. | $\sqrt{\frac{π^2}{16}+4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com