精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(-x)+f(x+3)=0;当x∈(0,3)时,f(x)=$\frac{elnx}{x}$,其中e是自然对数的底数,且e≈2.72,则方程6f(x)-x=0在[-9,9]上的解的个数为(  )
A.4B.5C.6D.7

分析 确定f(x)的周期为3,函数在(0,e)上单调递增,在(e,3)上单调递减,在[0,9]上作出y=f(x)的图象,作出y=$\frac{x}{6}$的图象,即可得出结论.

解答 解:依题意,f′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,故函数f(x)在上(0,e)单调递增,在(e,3)上单调递减,
故当x∈(0,3)时,f(x)max=f(e)=1,
又函数f(x)是定义在R上的奇函数,且x>0时,f(-x)+f(x+3)=0,即f(x+3)=f(x),且f(0)=0;
由6f(x)-x=0可知,f(x)=$\frac{x}{6}$.
在同一直角坐标系中,作出函数y=f(x)与y=$\frac{x}{6}$在[-9,9]上的图象如下图所示,

观察可知,y=f(x)与y=$\frac{x}{6}$有7个交点,即方程6f(x)-x=0的解有7个,
故选D.

点评 本题考查单调性和极值,函数的奇偶、周期性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{{\sqrt{x-2}}}{x-1}$,则函数f(x)的定义域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合M={x|x2-3x≤10},N={x|a-1≤x≤2a+1}.
(1)若a=2,求(∁RM)∪N;
(2)若M∪N=M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\sqrt{3}$x,关于x的方程ax2+bx-$\sqrt{{a}^{2}-{b}^{2}}$=0的两根为m,n,则点P(m,n)(  )
A.在圆x2+y2=7内B.在圆x2+y2=7上
C.在椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1内D.在椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x(1-a|x|)+1(a>0),若f(x+a)≤f(x)对任意的x∈R恒成立,则实数a的取值范围是[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.关于函数y=tan(2x-$\frac{π}{3}$),下列说法正确的是(  )
A.最小正周期为πB.是奇函数
C.在区间$(-\frac{1}{12}π,\frac{5}{12}π)$上单调递减D.$(\frac{5}{12}π,0)$为其图象的一个对称中心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求$f(\frac{7π}{8})$的值;
(2)求函数g(x)=f(x)+f(x+$\frac{π}{4}$)的对称轴与单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产用水,已知:该厂生活用水每小时10吨,工业用水总量W(吨)与时间t(单位:小时,规定早晨六点时t=0)的函数关系为W=100$\sqrt{t}$,水塔的进水量有10级,第一级每小时水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中点.
(1)求证:PB⊥AC.
(2)求二面角E-AC-D的正切值.

查看答案和解析>>

同步练习册答案