精英家教网 > 高中数学 > 题目详情
17.不等式x2+x-2>0的解集为{x|x<-2或x>1}.

分析 不等式x2+x-2>0化为:(x+2)(x-1)>0,解出即可得出.

解答 解:不等式x2+x-2>0化为:(x+2)(x-1)>0,解得x>1或x<-2.
∴不等式x2+x-2>0的解集为{x|x<-2或x>1}.
故答案为:{x|x<-2或x>1}.

点评 本题考查了一元二次不等式的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知集合M={x|x2-3x≤10},N={x|a-1≤x≤2a+1}.
(1)若a=2,求(∁RM)∪N;
(2)若M∪N=M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求$f(\frac{7π}{8})$的值;
(2)求函数g(x)=f(x)+f(x+$\frac{π}{4}$)的对称轴与单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产用水,已知:该厂生活用水每小时10吨,工业用水总量W(吨)与时间t(单位:小时,规定早晨六点时t=0)的函数关系为W=100$\sqrt{t}$,水塔的进水量有10级,第一级每小时水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设命题p:函数f(x)=lg(-mx2+2x-m)的定义域为R;
命题q:函数g(x)=4lnx+$\frac{1}{2}{x^2}$-(m-1)x的图象上任意一点处的切线斜率恒大于2,
若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn=$\frac{n(n+1)}{2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{bn}的前n项和,其中bn=$\frac{{{a_{n+1}}}}{{2{S_n}•{S_{n+1}}}}$,求Tn
(Ⅲ)若存在n∈N*,使得Tn-λan≥3λ成立,求出实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某风景区水面游览中心计划国庆节当日投入之多3艘游船供游客观光,过去10年的数据资料显示每年国庆节当日客流量X(单位:万人)都大于1,并把客流量分成三段整理得下表:
国庆节当日客流量X1<X<33≤X≤5X>5
频数244
以这10年的数据资料记录的隔断客流量的频率作为每年客流量在隔断发生的概率,且每年国庆节当日客流量相互独立.
(1)求未来连续3年国庆节当日中,恰好有1年国庆节当日客流量超过5万人的概率;
(2)该水面游览中心希望投入的游船尽可能使用,但每年国庆节当日游船最多使用量:(单位:艘)受当日客流量X(单位:万人)的限制,其关联关系如下表:
国庆节当日客流量X1<X<33≤X≤5X>5
游船最多使用量123
若某艘游船国庆节当日使用,则水面游览中心国庆节当日可获得利润3万元,若某艘游船国庆节当日不使用,则水面游览中心国庆节当日亏损0.5万元,记Y(单位:万元)表示该水面游览中心国庆节当日获得总利润,当Y的数学期望最大时称水面游览中心在国庆节当日效益最佳,问该水面游览中心的国庆节当日应投入多少艘游船才能使该水面游览中心在国庆节当日效益最佳?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中点.
(1)求证:PB⊥AC.
(2)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若函数f(x)=Asin(ωx+φ)(A)>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$的部分图象如图所示,B,C分别是图象的最低点和最高点,
其中|BC|=$\sqrt{\frac{{π}^{2}}{4}+16}$.
(I)求函数f(x)的解析式;
(II)在锐角△ABC中,a,b,c分别是角A、B、C的对边,若f(A)=$\sqrt{3}$,a=2,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案