精英家教网 > 高中数学 > 题目详情
7.若函数f(x)=Asin(ωx+φ)(A)>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$的部分图象如图所示,B,C分别是图象的最低点和最高点,
其中|BC|=$\sqrt{\frac{{π}^{2}}{4}+16}$.
(I)求函数f(x)的解析式;
(II)在锐角△ABC中,a,b,c分别是角A、B、C的对边,若f(A)=$\sqrt{3}$,a=2,求△ABC周长的取值范围.

分析 (I)由T=$\frac{4}{3}$[$\frac{5π}{12}$-(-$\frac{π}{3}$)]=π=$\frac{2π}{ω}$可求得ω,再由B(-$\frac{π}{12}$,-A),C($\frac{5π}{12}$,A),|BC|=$\sqrt{{4A}^{2}{+(\frac{π}{2})}^{2}}$=$\sqrt{\frac{{π}^{2}}{4}+16}$,可求得A,继而可求φ,于是可求得函数f(x)的解析式;
(II)在锐角△ABC中,由f(A)=$\sqrt{3}$可求得A,又a=2,利用正弦定理及三角恒等变换可求得2$\sqrt{3}$<b+c≤4,从而可求得△ABC周长的取值范围.

解答 解(Ⅰ)由图象可得:f(x)的周期T=$\frac{4}{3}$[$\frac{5π}{12}$-(-$\frac{π}{3}$)]=π,
即:$\frac{2π}{ω}$=π得ω,…(2分)
又由于B(-$\frac{π}{12}$,-A),C($\frac{5π}{12}$,A),∴|BC|=$\sqrt{{4A}^{2}{+(\frac{π}{2})}^{2}}$=$\sqrt{\frac{{π}^{2}}{4}+16}$,∴A=2,…(4分)
又将C($\frac{5π}{12}$,2)代入f(x)=2sin(2x+φ),2sin(2×$\frac{5π}{12}$+φ)=2,
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$解得φ=-$\frac{π}{3}$,
∴f(x)=2sin(2x-$\frac{π}{3}$),…(6分)
(Ⅱ)∵f(A)=2sin(2A-$\frac{π}{3}$)=$\sqrt{3}$,
∴2A-$\frac{π}{3}$=$\frac{π}{3}$或2A-$\frac{π}{3}$=$\frac{2π}{3}$,
解得A=$\frac{π}{3}$或A=$\frac{π}{2}$(舍去),…(8分)
正弦定理$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=$\frac{4\sqrt{3}}{3}$ 得:
b+c=$\frac{4\sqrt{3}}{3}$(sinB+sinC)=$\frac{4\sqrt{3}}{3}$[sinB+sin(B+$\frac{π}{3}$)]=4sin(B+$\frac{π}{6}$),
△ABC 是锐角三角形,∴B+C=$\frac{2π}{3}$,0<B<$\frac{π}{2}$,0<C<$\frac{π}{2}$,
∴$\frac{π}{6}$<B<$\frac{π}{2}$,$\frac{π}{3}$<B+$\frac{π}{6}$<$\frac{2π}{3}$.…(10分)
∴2$\sqrt{3}$<b+c≤4,
∴求△ABC周长的取值范围为(2+2$\sqrt{3}$,6].…(12分)

点评 本题考查由f(x)=Asin(ωx+φ)的部分图象确定解析式,求得A与φ的值是关键,也是难点,考查正弦定理与三角恒等变换的综合运用,考查运算求解能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.不等式x2+x-2>0的解集为{x|x<-2或x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合P={x?x-1≤0},Q={x?0<x≤2},则(CRP)∩Q=(  )
A.(0,1)B.(0.2]C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[-3,-2]上是减函数,若α,β是锐角三角形的两个内角,则(  )
A.f(sinα)>f(sinβ)B.f(sinα)<f(cosβ)C.f(cosα)<f(cosβ)D.f(sinα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=logax+b(a>0,a≠1)的定义域、值域都是[1,2],则a+b=$\frac{5}{2}$或3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数y=f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使函数值y<0的x取值范围为(  )
A.(-2,2)B.(2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知扇形AOB的圆心角为90°,该扇形弧$\widehat{AB}$所对的弦AB将扇形分成两部分,这两部分各以AO为轴旋转一周,则这两部分所得旋转体的体积比值为(  )
A.1:1B.$1:\sqrt{2}$C.2:1D.(π-2):2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,既是偶函数,又是在区间(0,+∞)上单递减的函数是(  )
A.y=x-2B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.平行于圆锥底面的截面面积是底面积的一半,则此截面分圆锥的高为上、下两段的比为1:($\sqrt{2}-1$).

查看答案和解析>>

同步练习册答案