已知函数,,其中的函数图象在点处的切线平行于轴.
(1)确定与的关系; (2)若,试讨论函数的单调性;
(3)设斜率为的直线与函数的图象交于两点()证明:.
(1);(2)当时,函数在单调递增,在单调递减;在上单调递增;当时,函数在上单调递增;当时,函数在上单调递增,在单调递减;在上单调递增.(3)详见解析。
【解析】
试题分析:(1)由导数的几何意义可知,即可得与的关系。(2)先求导数,及其零点,判断导数符号,即可得原函数增减变化,注意分类讨论。(3)由可得。然后分别证明不等式的左右两侧,两侧不等式的证明均需构造函数,再利用函数的单调性证明。
试题解析:【解析】
(1)依题意得,则
由函数的图象在点处的切线平行于轴得:
∴ 4分
(2)由(1)得
∵函数的定义域为
①当时,
由得,由得,
即函数在(0,1)上单调递增,在单调递减;
②当时,令得或,
若,即时,由得或,由得,
即函数在,上单调递增,在单调递减;
若,即时,由得或,由得,即函数在,上单调递增,在单调递减;
若,即时,在上恒有,即函数在上单调递增.
综上得:当时,函数在(0,1)上单调递增,在单调递减;
当时,函数在单调递增,在单调递减;在上单调递增;
当时,函数在上单调递增,
当时,函数在上单调递增,在单调递减;在上单调递增.
9分
(3)依题意得,证,即证
因,即证. 令(),即证()
令(),则
∴在(1,+)上单调递增,
∴=0,即()①
再令m(t)=lnt t+1,= 1<0, m(t)在(1,+∞)递减,
∴m(t)<m(1)=0,即lnt<t 1 ②
综合①②得(),即. 14分
考点:1导数及导数的几何意义;2用导数分析函数的单调性;3用单调性证明不等式。
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十二第十章第九节练习卷(解析版) 题型:选择题
已知随机变量X~B(6,),则P(-2≤X≤5.5)=( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十一第十章第八节练习卷(解析版) 题型:填空题
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)= .
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
已知函数 , .
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)当时,函数在上的最大值为,若存在,使得成立,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年陕西省咸阳市高考模拟考试(一)理科数学试卷(解析版) 题型:选择题
某产品在某零售摊位上的零售价x(元)与每天的销售量y(个)统计如下表:据上表可得回归直线方程=b+a中的b=-4,据此模型预计零售价定为15元时,销售量为 ( )
A.48 B.49 C.50 D.51
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)仿真模拟卷2练习卷(解析版) 题型:填空题
已知a,b,c分别为△ABC的三个内角A,B,C的对边,若a2=b2+c2-bc,=+,则tan B的值等于________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com