精英家教网 > 高中数学 > 题目详情
(2010•江苏二模)已知函数f(x)是定义在(0,+∞)上的单调增函数,当n∈N*时,f(n)∈N*,若f[f(n)]=3n,则f(5)的值等于
8
8
分析:结合题设条件,利用列举法一一验证,能够求出f(5)的值.
解答:解:若f(1)=1,则f(f(1))=f(1)=1,与条件f(f(n))=3n矛盾,故不成立;
若f(1)=3,则f(f(1))=f(3)=3,进而f(f(3))=f(3)=9,与前式矛盾,故不成立;
若f(1)=n(n>3),则f(f(1))=f(n)=3,与f(x)单调递增矛盾.
所以只剩f(1)=2.验证之:
f(f(1))=f(2)=3,
进而f(f(2))=f(3)=6,
进而f(f(3))=f(6)=9,
由单调性,f(4)=7,f(5)=8,
故答案为:8.
点评:本题考查函数值的求法,解题时要认真审题,仔细解答,注意列举法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•江苏二模)如图是一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为
π
4
,设∠AOE=α(0≤α≤
4
),探照灯O照射在长方形ABCD内部区域的面积为S.
(1)当0≤α<
π
2
时,写出S关于α的函数表达式;
(2)当0≤α≤
π
4
时,求S的最大值.
(3)若探照灯每9分钟旋转“一个来回”(OE自OA转到OC,再回到OA,称“一个来回”,忽略OE在OA及OC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG=
π
6
,求点G在“一个来回”中,被照到的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏二模)函数y=sinx+
3
cosx
(x∈R)的值域为
[-2,2]
[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏二模)满足sin
π
5
sinx+cos
5
cosx=
1
2
的锐角x=
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏二模)在等腰△ABC中,已知AB=AC,B(-1,0),D(2,0)为AC的中点.
(1)求点C的轨迹方程;
(2)已知直线l:x+y-4=0,求边BC在直线l上的投影EF长的最大值.

查看答案和解析>>

同步练习册答案