精英家教网 > 高中数学 > 题目详情
5.(1)正实数x、y满足x+2y=xy,且x+2y>m2+2m恒成立,试确定实数m的取值范围;
(2)已知a、b、c均为正数,且a+b+c=1,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$≥9.

分析 (1)运用x+2y=(x+2y)($\frac{2}{x}+\frac{1}{y}$)=4+$\frac{4y}{x}$+$\frac{x}{y}$≥4+4=8,得出8>m2+2m,求解即可;
(2)利用基本不等式的性质即可得出.

解答 (1)解:∵两个正实数x、y满足x+2y=xy,
∴$\frac{2}{x}+\frac{1}{y}$=1,
∴x+2y=(x+2y)($\frac{2}{x}+\frac{1}{y}$)=4+$\frac{4y}{x}$+$\frac{x}{y}$≥4+4=8,
∵x+2y>m2+2m恒成立,
∴8>m2+2m,
求解得出m的范围:-4<m<2;
(2)证明:(a+b+c)•($\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$)≥3$\root{3}{abc}$•3$\root{3}{\frac{1}{abc}}$=9,当且仅当a=b=c>0时取等号.
∵a+b+c=1,∴$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$≥9.

点评 本题考查了基本不等式求解最值,把不等式恒成立问题转化为最值求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设过曲线f(x)=ex+x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=2cosx-ax上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示阴影部分的面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)设复数z满足|z|=1,且(3+4i)•z为纯虚数,求$\overline{z}$;
(2)已知(2$\sqrt{x}$-$\frac{1}{{\sqrt{x}}}}$)n的展开式中所有二项式系数之和为64,求展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在二项式($\frac{x}{2}$+$\frac{2}{\root{3}{x}}$)n(其中n∈N*)的展开式中,第5项的二项式系数最大,则展开式中的常数项是(  )
A.1972B.448C.896D.224

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知变量x,y之间的回归直线方程为$\hat y$=bx+a(a>0,b>0),且样本点的中心为(4,1),则a+4b的值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个多面体的三视图如图所示,则此多面体的外接球的表面积为(  )
A.$\sqrt{14}π$B.14πC.$\sqrt{7}π$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2004 年5 月31 日国家制定了新的酒驾醉驾标准,车辆驾驶人员血液酒精含量大于或等于20mg/100ml(0.2‰),小于80mg/100ml(0.8‰)为饮酒驾车;大于或等于80mg/100ml(0.8‰)为醉酒驾车.以下是血清里酒精含量与常人精神状态关联的五个阶段:
血清酒精含量[0.2‰,0.4‰)[0.4‰,0.8‰)[0.8‰,1.2‰)[1.2‰,1.6‰)[1.6‰,+∞)
常人精神状态君子态(愉快)孔雀态(炫耀)狮子态(打架)猴子态(失控)狗熊态(昏睡)
但血清中的酒精含量在饮用等量酒的情况下,是因人而异有所不同的.下面是某卫生机构在20~55 岁的饮酒男性志愿者中,随机选取30 人作为样本进行测试.在饮用了250ml(60%)60度纯粮白酒(相当于5 瓶啤酒)恰好一小时,血清中酒精含量(最大值)统计数据如下:
血清酒精含量[0.2,0.4‰‰)[0.4‰,0.8‰)[0.8‰,1.2‰)[1.2‰,1.6‰)[1.6‰,+∞)
人数1212132
(以上数据为参考依据)
在午夜12 点,酒吧营业两小时,客人餐饮大约一小时,随机在酒吧街请出3名20~55 岁的男性(每人饮用相当于60度白酒饮酒量250ml 左右).
(1)计算其中恰有两人进入狮子态的概率是多少?
(2)用ξ表示3人中血清酒精含量0.8‰及以上的人数,求出ξ的概率分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx-2x+4,是否存在实数m,使得m+mf′(x)≤xf(x)在x∈(1,+∞)上恒成立,求实数m的最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案