精英家教网 > 高中数学 > 题目详情
20.在二项式($\frac{x}{2}$+$\frac{2}{\root{3}{x}}$)n(其中n∈N*)的展开式中,第5项的二项式系数最大,则展开式中的常数项是(  )
A.1972B.448C.896D.224

分析 二项式($\frac{x}{2}$+$\frac{2}{\root{3}{x}}$)n(其中n∈N*)的展开式中,第5项的二项式系数最大,可得n=8.再利用展开式的通项公式即可得出.

解答 解:∵二项式($\frac{x}{2}$+$\frac{2}{\root{3}{x}}$)n(其中n∈N*)的展开式中,第5项的二项式系数最大,∴n=8.
∴$(\frac{x}{2}+\frac{2}{\root{3}{x}})^{8}$的展开式中的通项公式为:Tr+1=${∁}_{8}^{r}(\frac{x}{2})^{8-r}(\frac{2}{\root{3}{x}})^{r}$=22r-8${∁}_{8}^{r}$${x}^{8-\frac{4r}{3}}$.
令8-$\frac{4r}{3}$=0,解得r=6.
∴展开式中的常数项=${2}^{4}{∁}_{8}^{6}$=448.
故选:B.

点评 本题考查了二项式定理的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A、B、C所对边分别为a、b、c,若bcosC=ccosB成立,则△ABC是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的体积为$4\sqrt{3}+2π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB的延长线于点F.
(1)求证:PB•CB=CD•EF;
(2)若CD=2,CB=2$\sqrt{2}$,求△CEF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,在定义域上既是奇函数又存在零点的函数是(  )
A.y=-$\sqrt{x}$B.y=$\frac{1}{x}$C.y=ex-e-xD.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)正实数x、y满足x+2y=xy,且x+2y>m2+2m恒成立,试确定实数m的取值范围;
(2)已知a、b、c均为正数,且a+b+c=1,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算
(1)(5-6i)+(-2-i)-(3+4i)
(2)$\frac{1-i}{1+i}$+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(cosx)=3x,(x∈[0,π])那么f(sin$\frac{π}{5}$)=(  )
A.$\frac{3π}{5}$B.$\frac{2π}{5}$C.$\frac{3π}{10}$D.$\frac{9π}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的函数f(x)满足f(1)=4,f′(x)<2,则f(x3)>2x3+2的解集是(-1,1).

查看答案和解析>>

同步练习册答案