分析 设以MN为直径的圆的圆心为O2(0,a),半径为r,OP=t,由两圆外切和∠MPN的大小恒为定值可得.
解答 解:设以MN为直径的圆的圆心为O2(0,a),半径为r,OP=t,
则tan∠OPM=$\frac{a-r}{t}$,tan∠OPN=$\frac{a+r}{t}$,
∴tan∠MPN=tan(∠OPN-∠OPM)
=$\frac{\frac{a+r}{t}-\frac{a-r}{t}}{1+\frac{a+r}{t}•\frac{a-r}{t}}$=$\frac{2rt}{{t}^{2}+{a}^{2}-{r}^{2}}$,
∵两圆外切,∴$\sqrt{{a}^{2}+9}$=|r+2|,
∴a2=(r+2)2-9,
∴tan∠MPN=$\frac{2rt}{{t}^{2}+{a}^{2}-{r}^{2}}$=$\frac{2t}{\frac{{t}^{2}-5}{r}+4}$,
∵∠MPN的大小恒为定值,∴t=$\sqrt{5}$
故答案为:$\sqrt{5}$
点评 本题考查圆与圆的位置关系,涉及两角差的正切公式,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M>N? | B. | M=N? | ||
| C. | M<N? | D. | M、N 的大小关系不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2) | B. | (2,+∞) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -9 | B. | 9 | C. | -16 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com