精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系xOy中,以x轴为始边作锐角α,它的终边与单位圆相交于点A,且点A的横坐标为$\frac{5}{13}$,则$tan(π-\frac{α}{2})$的值为-$\frac{2}{3}$.

分析 由条件利用任意角的三角函数的定义求得tanα,再利用二倍角的正切公式、诱导公式求得tan$\frac{α}{2}$ 的值,可得$tan(π-\frac{α}{2})$的值.

解答 解:由题意可得点A的横坐标为$\frac{5}{13}$,它的纵坐标为$\frac{12}{13}$,故tanα=$\frac{\frac{12}{13}}{\frac{5}{13}}$=$\frac{12}{5}$,
再利用二倍角公式可得 $\frac{12}{5}$=$\frac{2tan\frac{α}{2}}{1{-tan}^{2}\frac{a}{2}}$,求得tan$\frac{α}{2}$=$\frac{2}{3}$,或tan$\frac{α}{2}$=-$\frac{3}{2}$(舍去),
故$tan(π-\frac{α}{2})$=-tan$\frac{α}{2}$=-$\frac{2}{3}$,
故答案为:-$\frac{2}{3}$.

点评 本题主要考查任意角的三角函数的定义,二倍角的正切公式、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知M,N为y轴正半轴上的两个动点,点P(异于原点O)为x轴上的一个定点,若以MN为直径的圆与圆(x-3)2+y2=4相外切,且∠MPN的大小恒为定值,则线段OP的长为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)定义域为R,f(2+x)=f(2-x),且当x≥2时,$f(x)={(\frac{1}{2})^x}$,则有(  )
A.$f(\frac{1}{2})<f(\frac{3}{2})<f(\frac{8}{3})$B.$f(\frac{1}{2})<f(\frac{8}{3})<f(\frac{3}{2})$C.$f(\frac{3}{2})<f(\frac{1}{2})<f(\frac{8}{3})$D.$f(\frac{8}{3})<f(\frac{3}{2})<f(\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中的假命题是(  )
A.?x0∈R,lgx0=0B.?x0∈R,tanx0=0C.?x∈R,x3>0D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知函数f(x)=ax+lnx,则当a<0时,f(x)的单调增区间是(0,-$\frac{1}{a}$),f(x)的单调减区间是(-$\frac{1}{a}$,+∞).
(2)已知函数f(x)=lnx,g(x)=$\frac{1}{2}$ax2+2x,a≠0,若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列六个命题:
(1)若f(x-1)=f(1-x),则函数f(x)的图象关于直线x=1对称.
(2)y=f(x-1)与y=f(1-x)的图象关于直线x=0对称.
(3)y=f(x+3)的反函数与y=f-1(x+3)是相同的函数.
(4)$y={({\frac{1}{2}})^{|x|}}-{sin^2}$x+2015无最大值也无最小值.
(5)y=$\frac{2tanx}{{1-{{tan}^2}x}}$的周期为π.
(6)y=sinx(0≤x≤2π)有对称轴两条,对称中心三个.
则正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|3≤x≤7},B={x|3<2x-1<9},求:
(1)A∩B;                       
(2)(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知不同直线a,b,l,不同平面α,β,γ,则下列命题正确的是(  )
A.若a⊥l,b⊥l,则a∥bB.若α⊥γ,β⊥γ,则α∥βC.若β⊥γ,b⊥γ,则b∥βD.若α⊥l,β⊥l,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上取三点,其横坐标满足x1+x3=2x2,三点与某一焦点的连线段长分别为r1,r2,r3.则r1,r2,r3满足(  )
A.r1,r2,r3成等差数列B.$\frac{1}{{r}_{1}}$+$\frac{1}{{r}_{2}}$=$\frac{2}{{r}_{3}}$
C.r1,r2,r3成等比数列D.以上结论全不对

查看答案和解析>>

同步练习册答案