分析 (I)由3asinC=4ccosA,利用正弦定理可得3sinAsinC=4sinCcosA,sinC≠0,可得tanA,sinA,cosA.由$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,可得bccosA=3,解得bc.即可得出S=$\frac{1}{2}$bcsinA.
(II)利用(I)及其余弦定理即可得出.
解答 解:(I)∵3asinC=4ccosA,∴3sinAsinC=4sinCcosA,sinC≠0,
∴tanA=$\frac{4}{3}$,可得sinA=$\frac{4}{5}$,cosA=$\frac{3}{5}$.
∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,∴bccosA=3,∴bc=5.
∴S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×5×\frac{4}{5}$=2.
(II)由(I)可得:b=5.
∴a2=1+52-2×5×1×$\frac{3}{5}$=20,
解得a=2$\sqrt{5}$.
点评 本题考查了正弦定理余弦定理、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{3}$ | B. | $2+\sqrt{3}$ | C. | $12+6\sqrt{3}$ | D. | $4+2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | {0,1,2,3} | C. | {-1,0,1,2} | D. | {-1,0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com