精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy 中,已知点A(2,-1)和坐标满足$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$的动点M(x,y),则目标函数z=$\overrightarrow{OA}•\overrightarrow{OM}$的最大值为(  )
A.4B.5C.6D.7

分析 作出不等式组对应的平面区域,利用向量数量积公式计算z根据z的几何意义,结合数形结合进行求解即可.

解答 解:通解因为z=$\overrightarrow{OA}•\overrightarrow{OM}$,则z=2x-y,根据线性约束条件,作出可行域如图中阴影部分所示,目标函数
z=2x-y 的图象与直线y=2x 平行,由可行域知,当直线y=2x-z 经过点(2,-1)时,目标函数可以取到最大
值5.
法2.最优解由约束条件确定的可行域为三角形,其顶点的坐标分别为(-1,-1),($\frac{1}{2}$,$\frac{1}{2}$),(2,-1),
则由z=$\overrightarrow{OA}•\overrightarrow{OM}$,得z=2x-y 过点(2,-1)时取到最大值5.
故选:B.

点评 本题主要考查简单的线性规划等基础知识,考查考生的数形结合能力、转化与化归能力及运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知命题p:f(x)=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$为奇函数;命题q:?x∈(0,$\frac{π}{2}$),sinx<x<tanx,则下面结论正确的是(  )
A.p∧(¬q)是真命题B.(¬p)∨q是真命题C.p∧q是假命题D.p∨q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=x3-ax在[1,2]是单调递增的,则a最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线的参数方程为$\left\{\begin{array}{l}{x=3t+2}\\{y=t-1}\end{array}\right.$(t是参数,1≤t≤3),则曲线是(  )
A.线段B.双曲线的一支C.D.射线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,最小值为2的(  )
A.y=x+$\frac{1}{x}$B.y=$\sqrt{{x}^{2}+5}$+$\frac{1}{\sqrt{{x}^{2}+5}}$
C.y=$\frac{sinx}{2}$+$\frac{2}{sinx}$(0<x<π)D.y=logab+logba(a>1,b>1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,且满足3asinC=4ccosA,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(Ⅰ)求△ABC的面积S;
(Ⅱ)若c=1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“a=1”是“函数f(x)=x2-2ax+b在区间[1,+∞)上为增函数”的(  )
A.既不充分也不必要条件B.必要不充分条件
C.充要条件D.充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义在(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,有f(x)>0.
①求证:f($\frac{m}{n}$)=f(m)-f(n);
②求证:f(x)在(0,+∞)上是增函数;
③比较f($\frac{m+n}{2}$)与$\frac{f(m)+f(n)}{2}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{2\sqrt{5}}{5}$,它的一个顶点恰好是抛物线y=$\frac{1}{4}$x2的焦点,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若$\overrightarrow{MA}$=λ1$\overrightarrow{AF}$,$\overrightarrow{MB}$=λ2$\overrightarrow{BF}$,求证:λ12为定值.

查看答案和解析>>

同步练习册答案