精英家教网 > 高中数学 > 题目详情
(2013•红桥区二模)集合A={x||x-2|≤2},B={y|y=-x2,-1≤x≤2},则A∩B=(  )
分析:解绝对值不等式|x-2|≤2可求得集合A,由y=-x2,-1≤x≤2可求得集合B,从而可得A∩B.
解答:解:∵|x-2|≤2,
∴-2≤x-2≤2,
∴0≤x≤4,即A={x|0≤x≤4};
又B={y|y=-x2,-1≤x≤2}={y|-4≤y≤0},
∴A∩B={0}.
故选C.
点评:本题考查绝对值不等式的解法,考查函数的值域,考查交集及其运算,求得集合A与集合B是关键,数中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•红桥区二模)i是虚数单位,复数
7+i
1-i
的共轭复数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)在下列区间中,函数f (x)=
x
-
3x+4的零点所在的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)“函数y=ax是增函数”是“1og2a>1”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)设变量x,y满足约束条件
2x+y≤2
x+2y≤2
x≥0
y≥0
,则目标函数z=-2x+y的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)己知抛物线y2=4
3
x的准线与双曲线
x2
a2
-
y2
b2
=1两条渐近线分别交于A,B两点,且|AB|=2,则双曲线的离心率e为(  )

查看答案和解析>>

同步练习册答案