精英家教网 > 高中数学 > 题目详情
设函数)。
⑴若,求上的最大值和最小值;
⑵若对任意,都有,求的取值范围;
⑶若上的最大值为,求的值。
(1)最大值为3,最小值为-1;(2);(3)

试题分析:(1)是三次函数,要求它的最大值和最小值一般利用导数来求,具体的就是令,求出,再讨论相应区间的单调性,就可判断出函数什么时候取最大值,什么时候取最小值;(2)要求的取值范围,题中没有其他的信息,因此我们首先判断出的初始范围,由已知有,得出,而此时上的单调性不确定,通过讨论单调性,求出上的最大值和最小值,为什么要求最大值和最小值呢?原因就在于题设条件等价于最大值与最小值的差,这样就有求出的取值范围了;(3)对上的最大值为的处理方法,同样我们用特殊值法,首先,即,由这两式可得,而特殊值,又能得到,那么只能有,把代入,就可求出
试题解析:(1),∴,         2分
∴在内,,在内,
∴在内,为增函数,在内,为减函数,
的最大值为,最小值为,         4分
(2)∵对任意,∴
从而有,∴.         6分
,∴内为减函数,在内为增函数,只需,则
的取值范围是          10分[
(3)由②,
①加②得又∵      14分
代入①②得               16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

函数.
(Ⅰ)求函数单调递增区间;
(Ⅱ)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中为常数.
(Ⅰ)若函数是区间上的增函数,求实数的取值范围;
(Ⅱ)若时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知函数
(1)若,求曲线在点处的切线方程;
(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,求上的值域;
(2)求函数上的最小值;
(3)证明: 对一切,都有成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a为实数,x=1是函数的一个极值点。
(Ⅰ)若函数在区间上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意,有不等式
恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(其中),设.
(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;
(Ⅱ)当时,若存在,使成立,试求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数为常实数)的定义域为,关于函数给出下列命题:
①对于任意的正数,存在正数,使得对于任意的,都有
②当时,函数存在最小值;
③若时,则一定存在极值点;
④若时,方程在区间(1,2)内有唯一解.
其中正确命题的序号是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为,且是偶函数, 则曲线:y=f(x)在点(2,f(2))处的切线方程为              .  

查看答案和解析>>

同步练习册答案