【题目】已知集合
.
(1)若A是空集,求
的取值范围;
(2)若A中只有一个元素,求
的值,并求集合A;
(3)若A中至多有一个元素,求
的取值范围
【答案】(1)
;(2)当
时,
;当
时,
;(3)![]()
【解析】
(1)A为空集,表示方程ax2﹣3x+2=0无解,根据一元二次方程根的个数与△的关系,易得到一个关于a的不等式,解不等式即可得到答案.
(2)若A中只有一个元素,表示方程ax2﹣3x+2=0为一次方程,或有两个等根的二次方程,分别构造关于a的方程,即可求出满足条件的a值.
(3)若A中至多只有一个元素,则集合A为空集或A中只有一个元素,由(1)(2)的结论,将(1)(2)中a的取值并进来即可得到答案.
(1)若A是空集,
则方程ax2﹣3x+2=0无解
此时
△=9﹣8a<0
即a![]()
2)若A中只有一个元素
则方程ax2﹣3x+2=0有且只有一个实根
当a=0时方程为一元一次方程,满足条件
当a≠0,此时△=9﹣8a=0,解得:a![]()
∴a=0或a![]()
若a=0,则有A={
};若a
,则有A={
};
3)若A中至多只有一个元素,
则A为空集,或有且只有一个元素
由(1),(2)得满足条件的a的取值范围是:a=0或a![]()
科目:高中数学 来源: 题型:
【题目】己知
,
,且函数
的图像上的任意两条对称轴之间的距离的最小值是
.
(1)求
的值:
(2)将函数
的图像向右平移
单位后,得到函数
的图像,求函数
在
上的最值,并求取得最值时的
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:
(a>b>0)的左、右焦点分别为
,离心率为
,过焦点
且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为
,直线MB的斜率为
,证明
为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块边长为
的正方形铁皮,将其四个角各截去一个边长为
的小正方形,然后折成一个无盖的盒子.
![]()
(1)求出盒子的体积
以
为自变量的函数解析式,并写出这个函数的定义域;
(2)如果要做一个容积是
的无盖盒子,那么截去的小正方形的边长
是多少(精确度0.01,结果保留一位小数)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
![]()
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
),
(
).
(1)如果
是关于
的不等式
的解,求实数
的取值范围;
(2)判断
在
和
的单调性,并说明理由;
(3)证明:函数
存在零点q,使得
成立的充要条件是
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解该校多媒体教学普及情况,根据年龄按分层抽样的方式调查了该校50名教师,他们的年龄频数及使用多媒体教学情况的人数分布如下表:
![]()
(1)由以上统计数据完成下面的
列联表,并判断是否有
的把握认为以40岁为分界点对是否经常使用多媒体教学有差异?
![]()
附:
,
.
![]()
(2)若采用分层抽样的方式从年龄低于40岁且经常使用多媒体的教师中选出6人,再从这6人中随机抽取2人,求这2人中至少有1人年龄在30-39岁的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com