【题目】已知函数f(x)=x2﹣2x+1,g(x)=2aln(x﹣1)(a∈R).
(1)求函数h(x)=f(x)﹣g(x)的极值;
(2)当a>0时,若存在实数k,m使得不等式g(x)≤kx+m≤f(x)恒成立,求实数a的取值范围.
【答案】
(1)解:由题意得h(x)=(x﹣1)2﹣2aln(x﹣1),x>1,
∴ ,
①当a≤0时,则h'(x)>0,此时h(x)无极值;
②当a>0时,令h'(x)<0,则 ;令h'(x)>0,则 ;
∴h(x)在 上递减,在 上递增;
∴h(x)有极小值 ,无极大值
(2)解:当a>0时,有(1)知,h(x)在 上递减,在 上递增,且有极小值 ,
①当a>e时, ,
∴ ,
此时,不存在实数k,m,使得不等式g(x)≤kx+m≤f(x)恒成立;
②当0<a≤e时, ,f(x)=x2﹣2x+1在 处的切线方程为 ,
令 ,x>1,
则 ,
∴ ,
令 = ,x>1,
则 ,
令v'(x)<0,则 ;令v'(x)>0,则 ;
∴ =a(1﹣lna)≥0,
∴ ,
∴ ,
当 , 时,不等式g(x)≤kx+m≤f(x)恒成立,
∴0<a≤e符合题意;
由①,②得实数a的取值范围为(0,e]
【解析】(1)求出h(x),得出导函数,对参数a分类讨论即可;(2)结合(1)的讨论,当a>0时,有(1)知,h(x)在 上递减,在 上递增,且有极小值 ,构造函数 ,
, = ,对参数a分类讨论即可.
【考点精析】本题主要考查了函数的极值与导数和函数的最大(小)值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】设a,b是不相等的两个正数,且blna﹣alnb=a﹣b,给出下列结论:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正确结论的序号是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a3成等比数列.
(1)求数列{an}的通顶公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n.使得Sn>60n+800?若存在,求n的最小值:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+ 中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+ =x求得x= .类比上述过程,则 =( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(﹣2,0)的直线与x=2相交于点C,过点B(2,0)的直线与x=﹣2相交于点D,若直线CD与圆x2+y2=4相切,则直线AC与BD的交点M的轨迹方程为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)满足条件f(x+4)=﹣f(x),且函数y=f(x+2)是偶函数,当x∈(0,2]时, ,当x∈[﹣2,0)时,f(x)的最小值为3,则a的值等于( )
A.e2
B.e
C.2
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 过点(0,﹣2),F1 , F2分别是其左、右焦点,O为坐标原点,点P是椭圆上一点,PF1⊥x轴,且△OPF1的面积为 ,
(1)求椭圆E的离心率和方程;
(2)设A,B是椭圆上两动点,若直线AB的斜率为 ,求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是 ,乙每轮猜对的概率是 ;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:
(I)“星队”至少猜对3个成语的概率;
(II)“星队”两轮得分之和为X的分布列和数学期望EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足12Sn﹣36=3n2+8n,数列{log3bn}为等差数列,且b1=3,b3=27.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)令cn=(﹣1)n ,求数列{cn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com