精英家教网 > 高中数学 > 题目详情
精英家教网已知椭圆
x22
+y2=1
的左焦点为F,O为坐标原点.
(I)求过点O、F,并且与椭圆的左准线l相切的圆的方程;
(II)设过点F的直线交椭圆于A、B两点,并且线段AB的中点在直线x+y=0上,求直线AB的方程.
分析:(I)由题意可知圆过点O(0,0)、F(-1,0),圆心M在直线x=-
1
2
上.由此可求出圆的方程.
(II)设直线AB的方程为y=k(x+1)(k≠0),代入
x2
2
+y2=1
,整理得(1+2k2)x2+4k2x+2k2-2=0.然后利用根与系数的关系进行求解.
解答:精英家教网解:(I)∵a2=2,b2=1,
∴c=1,F(-1,0),l:x=-2.
∵圆过点O、F,
∴圆心M在直线x=-
1
2
上.
M(-
1
2
,t)
,则圆半径r=|(-
1
2
)-(-2)|=
3
2
.

由|OM|=r,得
(-
1
2
)
2
+t2
=
3
2

解得t=±
2
.

∴所求圆的方程为(x+
1
2
)2+(y±
2
)2=
9
4
.

(II)设直线AB的方程为y=k(x+1)(k≠0),
代入
x2
2
+y2=1
,整理得(1+2k2)x2+4k2x+2k2-2=0.
∵直线AB过椭圆的左焦点F,
∴方程有两个不等实根,
记A(x1,y1),B(x2,y2),AB中点N(x0,y0),
x1+x2=-
4k2
2k2+1
x0=
1
2
(x1+x2)=-
2k2
2k2+1
y0=k(x0+1)=
k
2k2+1

∵线段AB的中点N在直线x+y=0上,
x0+y0=-
2k2
2k2+1
+
k
2k2+1
=0

∴k=0,或k=
1
2
.

当直线AB与x轴垂直时,线段AB的中点F不在直线x+y=0上.
∴直线AB的方程是y=0,或x-2y+1=0.
点评:本题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力.解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x22
+y2=1
的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC∥x轴?求证直线AC经过线段EF的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
2
+y2=1
的左焦点为F,O为坐标原点.过点F的直线l交椭圆于A、B两点.
(1)若直线l的倾斜角α=
π
4
,求|AB|;
(2)求弦AB的中点M的轨迹方程;
(3)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,
线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x22
+y2=1的左、右焦点为F1、F2,上顶点为A,直线AF1交椭圆于B.如图所示沿x轴折起,使得平面AF1F2⊥平面BF1F2.点O为坐标原点.
( I ) 求三棱锥A-F1F2B的体积;
(Ⅱ)图2中线段BF2上是否存在点M,使得AM⊥OB,若存在,请在图1中指出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)如图,已知椭圆
x2
2
+y2=1
内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)证明:AC⊥BD;
(2)若M点恰好为椭圆中心O
(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.
(ii)求弦AB长的最小值.

查看答案和解析>>

同步练习册答案