精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg|x-1|,下列命题中所有正确的序号是
(2)(4)(5)
(2)(4)(5)

(1)函数f(x)的定义域和值域均为R;
(2)函数f(x)在(-∞,1)单调递减,在(1,+∞)单调递增;
(3)函数f(x)的图象关于y轴对称;
(4)函数f(x+1)为偶函数;
(5)若f(a)>0则a<0或a>2.
分析:由函数f(x)=lg|x-1|求得定义域为{x|x≠1}≠R,故(1)不正确. 根据复合函数的单调性可得(2)正确.
由于函数f(x)的 定义域不关于原点对称,故函数f(x)不具有奇偶性.由于函数f(x+1)=lg|x|,是偶函数,故(4)正确.由f(a)>0,可得|a-1|>1,解得a<0或a>2,故(5)正确.
解答:解:∵函数f(x)=lg|x-1|,故有x-1≠0,x≠1,故定义域为{x|x≠1}≠R,故(1)不正确.
由函数y=|x-1|在(-∞,1)单调递减,在(1,+∞)单调递增,可得
函数f(x)=lg|x-1|在(-∞,1)单调递减,在(1,+∞)单调递增,故(2)正确.
由于函数f(x)的 定义域不关于原点对称,故函数f(x)不具有奇偶性,故(3)不正确.
由于函数f(x+1)=lg|x|,其图象关于y轴对称,故是偶函数,故(4)正确.
由f(a)>0,则有lg|a-1|>0,故|a-1|>1,
∴a-1>1 或a-1<-1,
∴a<0或a>2,故(5)正确,
故答案为(2)(4)(5).
点评:本题主要考查对数函数的定义域、单调性和特殊点,对数函数的图象和性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案